मराठी

The Sum of Three Numbers Which Are Consecutive Terms of an A.P. is 21. If the Second Number is Reduced by 1 and the Third is Increased by 1, We Obtain Three Consecutive Terms of a - Mathematics

Advertisements
Advertisements

प्रश्न

The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.

उत्तर

Let the first term of an A.P is a and its common difference be d.

\[\therefore a_1 + a_2 + a_3 = 21\]

\[ \Rightarrow a + \left( a + d \right) + \left( a + 2d \right) = 21\]

\[ \Rightarrow 3a + 3d = 21 \]

\[ \Rightarrow a + d = 7 . . . (i)\]

\[\text { Now, according to the question }: \]

\[a , a + d - 1 \text { and } a + 2d + 1 \text { are in G . P } . \]

\[ \Rightarrow \left( a + d - 1 \right)^2 = a\left( a + 2d + 1 \right)\]

\[ \Rightarrow \left( 7 + a - a - 1 \right)^2 = a \left[ a + 2\left( 7 - a \right) + 1 \right] \]

\[ \Rightarrow \left( 6 \right)^2 = a\left( 15 - a \right)\]

\[ \Rightarrow 36 = 15a - a^2 \]

\[ \Rightarrow a^2 - 15a + 36 = 0\]

\[ \Rightarrow \left( a - 3 \right)\left( a - 12 \right) = 0\]

\[ \Rightarrow a = 3, 12\]

\[\text { Now, putting a = 2, 12 in equation (i), we get  d = 5, - 5, respectively } . \]

\[\text { Thus, for a = 2 and d = 5, the numbers are 2, 7 and 12 } . \]

\[\text { And, for a = 12 and d = - 5, the numbers are 12 , 7 and 2 } . \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Geometric Progression - Exercise 20.5 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 20 Geometric Progression
Exercise 20.5 | Q 5 | पृष्ठ ४५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.


Given a G.P. with a = 729 and 7th term 64, determine S7.


If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.


Insert two numbers between 3 and 81 so that the resulting sequence is G.P.


The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.


if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.


If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.


Find : 

nth term of the G.P.

\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]


Which term of the G.P. :

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]


If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.


If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.


Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.


The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.


Find the sum of the following geometric series:

\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]


Find the sum of the following geometric series:

\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]


The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.


Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.


If a, b, c are in G.P., prove that log a, log b, log c are in A.P.


If a, b, c are in G.P., prove that:

a (b2 + c2) = c (a2 + b2)


If a, b, c are in G.P., prove that:

\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]


If a, b, c, d are in G.P., prove that:

\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]


If a, b, c, d are in G.P., prove that:

(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.


If a, b, c, d are in G.P., prove that:

(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.


If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.


If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.


Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .


Check whether the following sequence is G.P. If so, write tn.

`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...


For what values of x, the terms `4/3`, x, `4/27` are in G.P.?


For the following G.P.s, find Sn.

`sqrt(5)`, −5, `5sqrt(5)`, −25, ...


For a G.P. If t3 = 20 , t6 = 160 , find S7


Find : `sum_("n" = 1)^oo 0.4^"n"`


The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the perimeters of all the squares


Select the correct answer from the given alternative.

The sum of 3 terms of a G.P. is `21/4` and their product is 1 then the common ratio is –


Answer the following:

Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.


Answer the following:

For a G.P. if t2 = 7, t4 = 1575 find a


At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.


For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.


The sum or difference of two G.P.s, is again a G.P.


The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.


If 0 < x, y, a, b < 1, then the sum of the infinite terms of the series `sqrt(x)(sqrt(a) + sqrt(x)) + sqrt(x)(sqrt(ab) + sqrt(xy)) + sqrt(x)(bsqrt(a) + ysqrt(x)) + ...` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×