Advertisements
Advertisements
प्रश्न
The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.
उत्तर
Let the required numbers be \[a, \text { ar and a } r^2 .\]
Sum of the numbers = 21
\[\Rightarrow a + ar + a r^2 = 21\]
\[ \Rightarrow a(1 + r + r^2 ) = 21 . . . (i)\]
Sum of the squares of the numbers = 189
\[\Rightarrow a^2 + (ar )^2 + (a r^2 )^2 = 189 \]
\[ \Rightarrow a^2 \left( 1 + r^2 + r^4 \right) = 189 . . . (ii)\]
\[\text { Now }, a ( 1 + r + r^2 ) = 21 [\text { From } (i)]\]
\[\text { Squaring both the sides }\]
\[ \Rightarrow a^2 \left( 1 + r + r^2 \right)^2 = 441\]
\[ \Rightarrow a^2 \left( 1 + r^2 + r^4 \right) + 2 a^2 r\left( 1 + r + r^2 \right) = 441\]
\[ \Rightarrow 189 + 2ar\left\{ a\left( 1 + r + r^2 \right) \right\} = 441 [\text { Using } (ii)]\]
\[ \Rightarrow 189 + 2ar \times 21 = 441 [\text{ Using } (i)]\]
\[ \Rightarrow ar = 6\]
\[ \Rightarrow a = \frac{6}{r} . . . (iii)\]
\[\text { Putting } a = \frac{6}{r} \text { in }(i)\]
\[ \frac{6}{r}\left( 1 + r + r^2 \right) = 21\]
\[ \Rightarrow \frac{6}{r} + 6 + 6r = 21\]
\[ \Rightarrow 6 r^2 + 6r + 6 = 21r\]
\[ \Rightarrow 6 r^2 - 15r + 6 = 0\]
\[ \Rightarrow 3(2 r^2 - 5r + 2) = 0\]
\[ \Rightarrow 2 r^2 - 5r + 2 = 0\]
\[ \Rightarrow (2r - 1)(r - 2) = 0\]
\[ \Rightarrow r = \frac{1}{2}, 2\]
\[\text { Putting } r = \frac{1}{2} \text {in a } = \frac{6}{r}, \text { we get } a = 12 . \]
\[\text { So, the numbers are 12, 6 and 3 } . \]
\[\text { Putting } r = 2 in a = \frac{6}{r}, \text { we get a } = 3 . \]
\[\text { So, the numbers are 3, 6 and 12 } . \]
\[\text { Hence, the numbers that are in G . P are 3, 6 and 12 } . \]
APPEARS IN
संबंधित प्रश्न
Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.
Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`
Find:
the ninth term of the G.P. 1, 4, 16, 64, ...
Which term of the G.P. :
\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]
Find the 4th term from the end of the G.P.
\[\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \frac{1}{54}, . . . , \frac{1}{4374}\]
The product of three numbers in G.P. is 125 and the sum of their products taken in pairs is \[87\frac{1}{2}\] . Find them.
Find the sum of the following geometric progression:
2, 6, 18, ... to 7 terms;
Find the sum of the following geometric series:
0.15 + 0.015 + 0.0015 + ... to 8 terms;
Evaluate the following:
\[\sum^{11}_{n = 1} (2 + 3^n )\]
If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).
Find the sum of the following serie to infinity:
\[1 - \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^3} + \frac{1}{3^4} + . . . \infty\]
Find the sum of the following serie to infinity:
8 + \[4\sqrt{2}\] + 4 + ... ∞
If a, b, c, d are in G.P., prove that:
(b + c) (b + d) = (c + a) (c + d)
If a, b, c, d are in G.P., prove that:
(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.
If a, b, c are in A.P. and a, x, b and b, y, c are in G.P., show that x2, b2, y2 are in A.P.
If logxa, ax/2 and logb x are in G.P., then write the value of x.
If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to
The value of 91/3 . 91/9 . 91/27 ... upto inf, is
If a, b, c are in G.P. and x, y are AM's between a, b and b,c respectively, then
The two geometric means between the numbers 1 and 64 are
Check whether the following sequence is G.P. If so, write tn.
`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...
Which term of the G.P. 5, 25, 125, 625, … is 510?
Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.
The numbers 3, x, and x + 6 form are in G.P. Find 20th term.
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 10 years.
For a G.P. a = 2, r = `-2/3`, find S6
Find the sum to n terms of the sequence.
0.5, 0.05, 0.005, ...
For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.
Find: `sum_("r" = 1)^10 5 xx 3^"r"`
Express the following recurring decimal as a rational number:
`2.bar(4)`
Express the following recurring decimal as a rational number:
`51.0bar(2)`
Find : `sum_("r" = 1)^oo 4(0.5)^"r"`
A ball is dropped from a height of 10m. It bounces to a height of 6m, then 3.6m and so on. Find the total distance travelled by the ball
Answer the following:
For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.
Answer the following:
Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.
In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.
For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.
The sum or difference of two G.P.s, is again a G.P.
If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.