मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.

बेरीज

उत्तर

Sn = 2(3n – 1)

∴ Sn–1 = 2(3n–1 – 1)

But tn = Sn – Sn–1

= 2(3n – 1) – 2(3n–1 – 1)

= 2(3n – 1 – 3n–1 + 1)

= 2(3n – 3n–1)

= 2(3n–1+1 – 3n–1)

∴ tn = 2.3n–1 (3 – 1) = 4.3n–1

∴ tn–1 = `4.3^(("n"– 1) –1)` = 4.3n–2

The sequence (tn) is a G. P.,

If `"t"_"n"/"t"_("n"-1)` = constant

for all n ∈ N

∴ `"t"_"n"/"t"_("n" - 1) = (4.3^("n" - 1))/(4.3^("n" - 2))`

= `3^("n" - 1)/(3^("n" - 1)*3^((-1))`

= 3

= constant for all n ∈ N

∴ r = 3

∴ the sequence is a G.P. with tn = 4.3n–1

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Sequences and Series - Exercise 2.2 [पृष्ठ ३२]

APPEARS IN

संबंधित प्रश्‍न

The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that q2 = ps.


Which term of the following sequence:

`sqrt3, 3, 3sqrt3`, .... is 729?


The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.


If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.


Show that the sequence <an>, defined by an = \[\frac{2}{3^n}\], n ϵ N is a G.P.


If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.


Find the sum of the following geometric series:

 0.15 + 0.015 + 0.0015 + ... to 8 terms;


Find the sum of the following geometric series:

`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;


How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?


The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.


Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.


Find the rational numbers having the following decimal expansion: 

\[0 .\overline {231 }\]


The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.


Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.


The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.


The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.


If a, b, c are in G.P., prove that the following is also in G.P.:

a2, b2, c2


If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.


If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.


Insert 5 geometric means between 16 and \[\frac{1}{4}\] .


Find the geometric means of the following pairs of number:

2 and 8


If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.


The fractional value of 2.357 is 


If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is


The two geometric means between the numbers 1 and 64 are 


Check whether the following sequence is G.P. If so, write tn.

1, –5, 25, –125 …


For the G.P. if a = `7/243`, r = 3 find t6.


If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio


The value of a house appreciates 5% per year. How much is the house worth after 6 years if its current worth is ₹ 15 Lac. [Given: (1.05)5 = 1.28, (1.05)6 = 1.34]


Express the following recurring decimal as a rational number:

`0.bar(7)`


Express the following recurring decimal as a rational number:

`2.3bar(5)`


If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term


Select the correct answer from the given alternative.

If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?


The third term of G.P. is 4. The product of its first 5 terms is ______.


The third term of a G.P. is 4, the product of the first five terms is ______.


The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.


If 0 < x, y, a, b < 1, then the sum of the infinite terms of the series `sqrt(x)(sqrt(a) + sqrt(x)) + sqrt(x)(sqrt(ab) + sqrt(xy)) + sqrt(x)(bsqrt(a) + ysqrt(x)) + ...` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×