Advertisements
Advertisements
प्रश्न
Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.
उत्तर
\[\text { Let us take a G . P . with terms }a_1 , a_2 , a_3 , a_4 , . . . \infty\text { and common ratio r }\left( \left| r \right| < 1 \right) . \]
\[\text { Also, let us take the sum of all the terms following each term to be } S_1 , S_2 , S_3 , S_4 , . . . \]
\[\text { Now }, S_1 = \frac{a_2}{\left( 1 - r \right)} = \frac{ar}{\left( 1 - r \right)}, \]
\[ S_2 = \frac{a_3}{\left( 1 - r \right)} = \frac{a r^2}{\left( 1 - r \right)}, \]
\[ S_3 = \frac{a_4}{\left( 1 - r \right)} = \frac{a r^3}{\left( 1 - r \right)}, \]
\[ \Rightarrow \frac{a_1}{S_1} = \frac{a}{\frac{ar}{\left( 1 - r \right)}} = \frac{\left( 1 - r \right)}{r}, \]
\[\frac{a_2}{S_2} = \frac{ar}{\frac{a r^2}{\left( 1 - r \right)}} = \frac{\left( 1 - r \right)}{r}, \]
\[\frac{a_3}{S_3} = \frac{a r^2}{\frac{a r^3}{\left( 1 - r \right)}} = \frac{\left( 1 - r \right)}{r}, \]
\[\text { It is clearly seen that the ratio of each term to the sum of all the terms following it is constant . } \]
APPEARS IN
संबंधित प्रश्न
Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.
Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.
The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]
Find :
the 10th term of the G.P.
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]
Which term of the G.P. :
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]
The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.
The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.
If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].
Find the sum of the following geometric series:
(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;
Find the sum of the following geometric series:
1, −a, a2, −a3, ....to n terms (a ≠ 1)
Evaluate the following:
\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]
How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?
Let an be the nth term of the G.P. of positive numbers.
Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.
If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.
If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.
Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.
If a, b, c, d are in G.P., prove that:
(a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2
If a, b, c, d are in G.P., prove that:
(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.
If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.
Find the geometric means of the following pairs of number:
−8 and −2
If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to
The nth term of a G.P. is 128 and the sum of its n terms is 225. If its common ratio is 2, then its first term is
If p, q be two A.M.'s and G be one G.M. between two numbers, then G2 =
Check whether the following sequence is G.P. If so, write tn.
2, 6, 18, 54, …
For the G.P. if r = `1/3`, a = 9 find t7
The numbers 3, x, and x + 6 form are in G.P. Find nth term
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares
Select the correct answer from the given alternative.
The sum of 3 terms of a G.P. is `21/4` and their product is 1 then the common ratio is –
Answer the following:
For a G.P. a = `4/3` and t7 = `243/1024`, find the value of r
Answer the following:
Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...
Answer the following:
Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.
Answer the following:
If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q
Answer the following:
If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0
Answer the following:
Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`
If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.
In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.
If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1
The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is 216 cm3 and the total surface area is 252cm2. The length of the longest edge is ______.