Advertisements
Advertisements
प्रश्न
If p, q be two A.M.'s and G be one G.M. between two numbers, then G2 =
पर्याय
(a) (2p − q) (p − 2q)
(b) (2p − q) (2q − p)
(c) (2p − q) (p + 2q)
(d) none of these
उत्तर
(a) (2p − q) (p − 2q)
\[\text{ Let the two numbers be a and b } . \]
\[\text{ a, p, q and b are in A . P } . \]
\[ \therefore p - a = q - p = b - q \]
\[ \Rightarrow p - a = q - p \text{ and } q - p = b - q\]
\[ \Rightarrow a = 2p - q \text{ and } b = 2q - p (i)\]
\[\text{ Also, a, G and b are in G . P }. \]
\[ \therefore G^2 = ab\]
\[ \Rightarrow G^2 = \left( 2p - q \right)\left( 2q - p \right)\]
APPEARS IN
संबंधित प्रश्न
If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.
Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio
If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`
if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]
Show that the sequence <an>, defined by an = \[\frac{2}{3^n}\], n ϵ N is a G.P.
Find :
the 8th term of the G.P. 0.3, 0.06, 0.012, ...
Find :
the 12th term of the G.P.
\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]
Which term of the G.P. :
\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]
The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.
If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.
The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.
Evaluate the following:
\[\sum^{11}_{n = 1} (2 + 3^n )\]
The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.
Find the rational number whose decimal expansion is \[0 . 423\].
Find the rational numbers having the following decimal expansion:
\[0 . \overline3\]
If a, b, c are in G.P., prove that:
a (b2 + c2) = c (a2 + b2)
If a, b, c, d are in G.P., prove that:
\[\frac{1}{a^2 + b^2}, \frac{1}{b^2 - c^2}, \frac{1}{c^2 + d^2} \text { are in G . P } .\]
If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.
If the fifth term of a G.P. is 2, then write the product of its 9 terms.
If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.
If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.
If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is
Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals
Let x be the A.M. and y, z be two G.M.s between two positive numbers. Then, \[\frac{y^3 + z^3}{xyz}\] is equal to
For the G.P. if a = `2/3`, t6 = 162, find r.
If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio
The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 3 years.
For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.
A ball is dropped from a height of 10m. It bounces to a height of 6m, then 3.6m and so on. Find the total distance travelled by the ball
Select the correct answer from the given alternative.
The common ratio for the G.P. 0.12, 0.24, 0.48, is –
Select the correct answer from the given alternative.
If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?
Answer the following:
If for a G.P. t3 = `1/3`, t6 = `1/81` find r
Answer the following:
If for a G.P. first term is (27)2 and seventh term is (8)2, find S8
In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.
The third term of G.P. is 4. The product of its first 5 terms is ______.
Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.
The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.