Advertisements
Advertisements
Question
If p, q be two A.M.'s and G be one G.M. between two numbers, then G2 =
Options
(a) (2p − q) (p − 2q)
(b) (2p − q) (2q − p)
(c) (2p − q) (p + 2q)
(d) none of these
Solution
(a) (2p − q) (p − 2q)
\[\text{ Let the two numbers be a and b } . \]
\[\text{ a, p, q and b are in A . P } . \]
\[ \therefore p - a = q - p = b - q \]
\[ \Rightarrow p - a = q - p \text{ and } q - p = b - q\]
\[ \Rightarrow a = 2p - q \text{ and } b = 2q - p (i)\]
\[\text{ Also, a, G and b are in G . P }. \]
\[ \therefore G^2 = ab\]
\[ \Rightarrow G^2 = \left( 2p - q \right)\left( 2q - p \right)\]
APPEARS IN
RELATED QUESTIONS
Evaluate `sum_(k=1)^11 (2+3^k )`
Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.
If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.
If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .
Find the value of n so that `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.
if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
−2/3, −6, −54, ...
Find the 4th term from the end of the G.P.
\[\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \frac{1}{54}, . . . , \frac{1}{4374}\]
The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.
If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].
The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.
The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.
Find the sum of the following geometric series:
0.15 + 0.015 + 0.0015 + ... to 8 terms;
Find the sum of the following geometric series:
1, −a, a2, −a3, ....to n terms (a ≠ 1)
Find the sum of the following series:
9 + 99 + 999 + ... to n terms;
The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.
If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).
Let an be the nth term of the G.P. of positive numbers.
Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.
Find the rational number whose decimal expansion is \[0 . 423\].
If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively
\[\frac{2S S_1}{S^2 + S_1}\text { and } \frac{S^2 - S_1}{S^2 + S_1}\]
If a, b, c are in G.P., prove that log a, log b, log c are in A.P.
If a, b, c are in G.P., then prove that:
If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.
If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.
If the first term of a G.P. a1, a2, a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is
The value of 91/3 . 91/9 . 91/27 ... upto inf, is
If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is
The two geometric means between the numbers 1 and 64 are
Check whether the following sequence is G.P. If so, write tn.
1, –5, 25, –125 …
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 3 years.
For the following G.P.s, find Sn.
p, q, `"q"^2/"p", "q"^3/"p"^2,` ...
For the following G.P.s, find Sn
0.7, 0.07, 0.007, .....
For a G.P. If t4 = 16, t9 = 512, find S10
For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.
If one invests Rs. 10,000 in a bank at a rate of interest 8% per annum, how long does it take to double the money by compound interest? [(1.08)5 = 1.47]
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`2, 4/3, 8/9, 16/27, ...`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
9, 8.1, 7.29, ...
Answer the following:
Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...
Answer the following:
If for a G.P. first term is (27)2 and seventh term is (8)2, find S8