Advertisements
Advertisements
Question
The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.
Solution
Let the first three numbers of the given G.P. be \[\frac{a}{r}, \text { a and ar }\]
∴ Product of the G.P. = −1
Similarly, Sum of the G.P. = \[\frac{13}{12}\]
\[\frac{- 1}{r} - 1 - r = \frac{13}{12}\]
\[ \Rightarrow 12 r^2 + 25r + 12 = 0\]
\[ \Rightarrow 12 r^2 + 16r + 9r + 12 = 0\]
\[ \Rightarrow 4r\left( 3r + 4 \right) + 3\left( 3r + 4 \right) = 0\]
\[ \Rightarrow \left( 4r + 3 \right)\left( 3r + 4 \right) = 0\]
\[ \Rightarrow r = - \frac{3}{4}, - \frac{4}{3}\]
Hence, the G.P. for a = −1 and r = \[- \frac{3}{4}\] is \[\frac{4}{3}, - 1 \text { and } \frac{3}{4}\].
And, the G.P. for a = −1 and r =\[- \frac{4}{3}\] is \[\frac{3}{4}, - 1 \text { and } \frac{4}{3}\]
APPEARS IN
RELATED QUESTIONS
The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that q2 = ps.
Which term of the following sequence:
`2, 2sqrt2, 4,.... is 128`
Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.
Find :
the 12th term of the G.P.
\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]
In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.
The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.
Find the sum of the following geometric progression:
2, 6, 18, ... to 7 terms;
Find the sum of the following geometric series:
(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;
The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.
Find the rational numbers having the following decimal expansion:
\[0 . 6\overline8\]
Three numbers are in A.P. and their sum is 15. If 1, 3, 9 be added to them respectively, they form a G.P. Find the numbers.
The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.
If a, b, c are in G.P., prove that:
\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]
If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.
Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .
If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.
Write the product of n geometric means between two numbers a and b.
The value of 91/3 . 91/9 . 91/27 ... upto inf, is
If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is
Check whether the following sequence is G.P. If so, write tn.
3, 4, 5, 6, …
For the G.P. if a = `7/243`, r = 3 find t6.
Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.
The numbers 3, x, and x + 6 form are in G.P. Find x
For a G.P. if S5 = 1023 , r = 4, Find a
Find the sum to n terms of the sequence.
0.5, 0.05, 0.005, ...
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.
Express the following recurring decimal as a rational number:
`51.0bar(2)`
Select the correct answer from the given alternative.
The common ratio for the G.P. 0.12, 0.24, 0.48, is –
Select the correct answer from the given alternative.
The tenth term of the geometric sequence `1/4, (-1)/2, 1, -2,` ... is –
Select the correct answer from the given alternative.
If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?
Answer the following:
Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.
Answer the following:
Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...
The third term of a G.P. is 4, the product of the first five terms is ______.
Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.
If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.