English

Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term. - Mathematics and Statistics

Advertisements
Advertisements

Question

Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.

Sum

Solution

Let the five numbers in G.P. be `"a"/"r"^2, "a"/"r", "a", "ar","ar"^2`

According to the given conditions,

`"a"/"r"^2 xx "a"/"r" xx "a" xx "ar" xx "ar"^2` = 1024

∴ a5 = 45

∴ a = 4   ...(i)

Also, ar2 = a2

∴ r2 = a

∴ r2 = 4   ...[From (i)]

∴ r = ± 2

When a = 4, r = 2

`"a"/"r"^2` = 1, `"a"/"r"` = 2, a = 4, ar = 8, ar2 = 16

When a = 4, r = – 2

`"a"/"r"^2` = 1, `"a"/"r"` = −2, a = 4, ar = −8, ar2 = 16

∴ the five numbers are 1, 2, 4, 8, 16 or 1, – 2, 4, – 8, 16.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Sequences and Series - Exercise 2.1 [Page 27]

RELATED QUESTIONS

The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.


Which term of the following sequence:

`1/3, 1/9, 1/27`, ...., is `1/19683`?


For what values of x, the numbers  `-2/7, x, -7/2` are in G.P?


Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).


Evaluate `sum_(k=1)^11 (2+3^k )`


The sum of first three terms of a G.P. is  `39/10` and their product is 1. Find the common ratio and the terms.


Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.


Find the sum to n terms of the sequence, 8, 88, 888, 8888… .


If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.


The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.


If \[\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}\] (x ≠ 0), then show that abc and d are in G.P.


If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].


Evaluate the following:

\[\sum^{10}_{n = 2} 4^n\]


Find the sum of the following series:

0.5 + 0.55 + 0.555 + ... to n terms.


How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?


Find the sum of the following serie to infinity:

\[1 - \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^3} + \frac{1}{3^4} + . . . \infty\]


The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.


If a, b, c are in G.P., prove that the following is also in G.P.:

a2, b2, c2


If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.


If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.

 

 

 


If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is 


Check whether the following sequence is G.P. If so, write tn.

3, 4, 5, 6, …


For the G.P. if r = − 3 and t6 = 1701, find a.


Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1


The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz


For a G.P. if a = 2, r = 3, Sn = 242 find n


Find the sum to n terms of the sequence.

0.2, 0.02, 0.002, ...


For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.


If S, P, R are the sum, product, and sum of the reciprocals of n terms of a G.P. respectively, then verify that `["S"/"R"]^"n"` = P


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`2, 4/3, 8/9, 16/27, ...`


The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares


Answer the following:

In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term


Answer the following:

Find the sum of the first 5 terms of the G.P. whose first term is 1 and common ratio is `2/3`


Answer the following:

Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.


Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.


For an increasing G.P. a1, a2 , a3 ........., an, if a6 = 4a4, a9 – a7 = 192, then the value of `sum_(i = 1)^∞ 1/a_i` is ______.


The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×