English

If Pth, Qth and Rth Terms of a G.P. Re X, Y, Z Respectively, Then Write the Value of Xq − R Yr − Pzp − Q. - Mathematics

Advertisements
Advertisements

Question

If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.

 

 

 

Solution

Let us take a G.P. whose first term is and common ratio is R. 

\[\text{ According to the question, we have }: \]
\[A R^{p - 1} = x\]
\[A R^{q - 1} = y\]
\[A R^{r - 1} = z\]
\[ \therefore x^{q - r} y^{r - p} z^{p - q} \]
\[ = A^{q - r} \times R^\left( p - 1 \right)\left( q - r \right) \times A^{r - p} \times R^\left( q - 1 \right)\left( r - p \right) \times A^{p - q} \times R^\left( r - 1 \right)\left( p - q \right) \]
\[ = A^{q - r + r - p + p - q} \times R^\left( pr - pr - q + r \right) + \left( rq - r + p - pq \right) + \left( pr - p - qr + q \right) \]
\[ = A^0 \times R^0 \]
\[ = 1\]
\[ \therefore x^{q - r} y^{r - p} z^{p - q} = 1\]
\[\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Geometric Progression - Exercise 20.7 [Page 56]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 20 Geometric Progression
Exercise 20.7 | Q 5 | Page 56

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.


Evaluate `sum_(k=1)^11 (2+3^k )`


The sum of first three terms of a G.P. is  `39/10` and their product is 1. Find the common ratio and the terms.


If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`


Find the value of n so that  `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.


The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

−2/3, −6, −54, ...


If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.


The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.


Find the sum of the following geometric series:

\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text {  to n terms }\]


Evaluate the following:

\[\sum^{11}_{n = 1} (2 + 3^n )\]


Find the sum of the following series:

7 + 77 + 777 + ... to n terms;


Find the sum of the following series:

0.5 + 0.55 + 0.555 + ... to n terms.


If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.


Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.


Find the sum of the terms of an infinite decreasing G.P. in which all the terms are positive, the first term is 4, and the difference between the third and fifth term is equal to 32/81.


Find the rational numbers having the following decimal expansion: 

\[0 . \overline3\]


Find the rational numbers having the following decimal expansion: 

\[0 . 6\overline8\]


The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.


If a, b, c are in G.P., prove that:

\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]


If a, b, c, d are in G.P., prove that:

 (a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2


If a, b, c, d are in G.P., prove that:

(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.


If a, b, c are in A.P. and a, x, b and b, y, c are in G.P., show that x2, b2, y2 are in A.P.


Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .


If pq be two A.M.'s and G be one G.M. between two numbers, then G2


If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is 


For the G.P. if r = `1/3`, a = 9 find t7


A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?


The numbers 3, x, and x + 6 form are in G.P. Find x


If S, P, R are the sum, product, and sum of the reciprocals of n terms of a G.P. respectively, then verify that `["S"/"R"]^"n"` = P


Express the following recurring decimal as a rational number:

`2.3bar(5)`


Express the following recurring decimal as a rational number:

`51.0bar(2)`


If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term


Find : `sum_("n" = 1)^oo 0.4^"n"`


Select the correct answer from the given alternative.

If common ratio of the G.P is 5, 5th term is 1875, the first term is -


Answer the following:

If for a G.P. t3 = `1/3`, t6 = `1/81` find r


If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×