English

Find the value of n so that an+1+bn+1an+bn may be the geometric mean between a and b. - Mathematics

Advertisements
Advertisements

Question

Find the value of n so that  `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.

Sum

Solution

The geometric mean between a and b = `sqrt"ab"`

⇒ `("a"^("n"+ 1) + "b"^("n" + 1))/("a"^"n" + "b"^"n") = sqrt"ab"`

∴ `"a"^("n"+ 1) + "b"^("n" + 1) = sqrt"ab" ("a"^"n" + "b"^"n")` 

= `"a"^("n"+ 1/2) "b"^(1/2) + "a"^(1/2) "b"^("n" + 1/2)`

or `("a"^("n" + 1) - "a"^("n" + 1/2) "b"^(1/2)) - ("a"^(1/2) "b"^("n" + 1/2) - "b"^("n" + 1)) = 0`

or `"a"^("n" + 1/2) ("a"^(1/2) - "b"^(1/2)) - "b"^ ("n" + 1/2)("a" ^(1/2) - "b"^(1/2)) = 0`

or `("a"^(1/2) - "b"^(1/2)) ("a"^("n" + 1/2) - "b"^ ("n" + 1/2)) = 0`

`"a" ^(1/2) - "b"^(1/2) ≠ 0`

∴ `"a"^("n" + 1/2) - "b"^ ("n" + 1/2) = 0`

or `"a"^("n" + 1/2) = "b"^ ("n" + 1/2)`

or `("a"/"b")^("n"+1/2) = 1 = ("a"/"b")^0`

⇒ `"n"+ 1/2 = 0` 

n = `(-1)/2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Sequences and Series - Exercise 9.3 [Page 193]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 9 Sequences and Series
Exercise 9.3 | Q 27 | Page 193

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).


The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.


If f is a function satisfying f (x +y) = f(x) f(y) for all x, y ∈ N such that f(1) = 3 and `sum_(x = 1)^n` f(x) = 120, find the value of n.


The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.


Find :

the 8th term of the G.P. 0.3, 0.06, 0.012, ...


The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.


Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.


Find the sum of the following geometric series:

 0.15 + 0.015 + 0.0015 + ... to 8 terms;


Find the sum of the following geometric series:

x3, x5, x7, ... to n terms


Evaluate the following:

\[\sum^{10}_{n = 2} 4^n\]


How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?


Let an be the nth term of the G.P. of positive numbers.

Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.


Find the sum of the following serie to infinity:

`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`


Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.


Find the rational numbers having the following decimal expansion: 

\[0 . \overline3\]


Three numbers are in A.P. and their sum is 15. If 1, 3, 9 be added to them respectively, they form a G.P. Find the numbers.


If a, b, c are in G.P., prove that:

\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]


If a, b, c, d are in G.P., prove that:

 (a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2


If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.


If a, b, c are in A.P. and a, x, b and b, y, c are in G.P., show that x2, b2, y2 are in A.P.


Find the geometric means of the following pairs of number:

2 and 8


If A1, A2 be two AM's and G1G2 be two GM's between and b, then find the value of \[\frac{A_1 + A_2}{G_1 G_2}\]


The nth term of a G.P. is 128 and the sum of its n terms  is 225. If its common ratio is 2, then its first term is


If pq be two A.M.'s and G be one G.M. between two numbers, then G2


If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]


In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is 


For the G.P. if a = `7/243`, r = 3 find t6.


Which term of the G.P. 5, 25, 125, 625, … is 510?


If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio


A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?


Express the following recurring decimal as a rational number:

`0.bar(7)`


Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"` 


The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares


Select the correct answer from the given alternative.

The common ratio for the G.P. 0.12, 0.24, 0.48, is –


Select the correct answer from the given alternative.

If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?


If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`


The third term of a G.P. is 4, the product of the first five terms is ______.


If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×