English

If A1, A2 Be Two Am'S and G1, G2 Be Two Gm'S Between a and B, Then Find the Value of a 1 + a 2 G 1 G 2 - Mathematics

Advertisements
Advertisements

Question

If A1, A2 be two AM's and G1G2 be two GM's between and b, then find the value of \[\frac{A_1 + A_2}{G_1 G_2}\]

Solution

\[\text {It is given that A_1 and A_2 are the A . M . s between a and b } . \]
\[\text{ Thus, a , A_1 , A_2 and b are in A . P . with common difference d  }. \]
\[\text{ Here }, d = \frac{b - a}{3}\]
\[ \therefore A_1 = a + \frac{b - a}{3} = \frac{2a + b}{3}\]
\[\text{ and } A_2 = a + \frac{2\left( b - a \right)}{3} = \frac{a + 2b}{3}\]
\[\text{ It is also given that G_1 and G_2 are the G . M . s between a and b } . \]
\[\text{ Thus, a , G_1 , G_2 and b are in G . P . with common ratio r } . \]
\[\text{ Here }, r = \left( \frac{b}{a} \right)^\frac{1}{3} \]
\[ \therefore G_1 = a \left( \frac{b}{a} \right)^\frac{1}{3} = b^\frac{1}{3} a^\frac{1}{3} \]
\[\text{ and } G_2 = a \left[ \left( \frac{b}{a} \right)^\frac{1}{3} \right]^2 = b^\frac{1}{3} a^\frac{1}{3} \]
\[ \Rightarrow \frac{A_1 + A_2}{G_1 G_2} = \frac{\frac{2a + b}{3} + \frac{a + 2b}{3}}{b^\frac{1}{3} a^\frac{1}{3} \times b^\frac{1}{3} a^\frac{1}{3}} = \frac{a + b}{ab}\]
\[\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Geometric Progression - Exercise 20.7 [Page 56]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 20 Geometric Progression
Exercise 20.7 | Q 6 | Page 56

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

For what values of x, the numbers  `-2/7, x, -7/2` are in G.P?


Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`


Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio


Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.


If f is a function satisfying f (x +y) = f(x) f(y) for all x, y ∈ N such that f(1) = 3 and `sum_(x = 1)^n` f(x) = 120, find the value of n.


If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.


Find:

the 10th term of the G.P.

\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]

 


If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.


Find the sum of the following geometric series:

(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;


Evaluate the following:

\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]


How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?


How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\]  ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?


Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.


If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.


Find the rational numbers having the following decimal expansion: 

\[0 .\overline {231 }\]


The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.


If a, b, c are in G.P., prove that:

a (b2 + c2) = c (a2 + b2)


If a, b, c are in G.P., prove that:

\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]


If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.


Insert 5 geometric means between 16 and \[\frac{1}{4}\] .


If logxa, ax/2 and logb x are in G.P., then write the value of x.


If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is 


The fractional value of 2.357 is 


The nth term of a G.P. is 128 and the sum of its n terms  is 225. If its common ratio is 2, then its first term is


If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is 


Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.


Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1


If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 10 years.


The numbers x − 6, 2x and x2 are in G.P. Find 1st term


Express the following recurring decimal as a rational number:

`2.bar(4)`


Find : `sum_("r" = 1)^oo 4(0.5)^"r"`


Select the correct answer from the given alternative.

Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –


Answer the following:

For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.


Answer the following:

Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.


If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1


The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.


If 0 < x, y, a, b < 1, then the sum of the infinite terms of the series `sqrt(x)(sqrt(a) + sqrt(x)) + sqrt(x)(sqrt(ab) + sqrt(xy)) + sqrt(x)(bsqrt(a) + ysqrt(x)) + ...` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×