English

If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P. - Mathematics and Statistics

Advertisements
Advertisements

Question

If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.

Sum

Solution

p, q, r, s are in G.P.

∴ `"q"/"p" = "r"/"q" = "s"/"r"`

Let `"q"/"p" = "r"/"q" = "s"/"r"` = k

∴ q = pk, r = qk, s = k

We have to prove that p + q, q + r, r + s are in G.P.

i.e. to prove that `("q" + "r")/("p" + "q") = ("r" + "s")/("q" + "r")`

L.H.S. = `("q" + "r")/("p" + "q") = ("q" + "qk")/("p" + "pk") = ("q"(1 + "k"))/("p"(1 + "k")) = "q"/"p"` = k

R.H.S. = `("r" + "s")/("q" + "r") = ("r" + "rk")/("q" + "qk") = ("r"(1 + "k"))/("q"(1 + "k")) = "r"/"q"` = k

∴  `("q" + "r")/("p" + "q") = ("r" + "s")/("q" + "r")`

∴  p + q, q + r, r + s are in G.P.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Sequences and Series - Exercise 2.1 [Page 27]

RELATED QUESTIONS

Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`


Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.


The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that q2 = ps.


How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?


If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .


The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.


If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]


Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...


If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.


If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.


The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.


Find the sum of the following geometric series:

 0.15 + 0.015 + 0.0015 + ... to 8 terms;


Find the sum of the following geometric series:

(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;


The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.


Find the sum :

\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]


If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).


If a, b, c are in G.P., prove that the following is also in G.P.:

a3, b3, c3


If a, b, c, d are in G.P., prove that:

(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.


If the first term of a G.P. a1a2a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is


If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is


Check whether the following sequence is G.P. If so, write tn.

2, 6, 18, 54, …


Check whether the following sequence is G.P. If so, write tn.

7, 14, 21, 28, …


For what values of x, the terms `4/3`, x, `4/27` are in G.P.?


The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz


The number of bacteria in a culture doubles every hour. If there were 50 bacteria originally in the culture, how many bacteria will be there at the end of 5thhour?


The numbers 3, x, and x + 6 form are in G.P. Find nth term


The numbers x − 6, 2x and x2 are in G.P. Find x


For the following G.P.s, find Sn

0.7, 0.07, 0.007, .....


Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"` 


The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares


The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the perimeters of all the squares


Select the correct answer from the given alternative.

Which term of the geometric progression 1, 2, 4, 8, ... is 2048


Answer the following:

In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term


For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.


The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.


If the sum of an infinite GP a, ar, ar2, ar3, ...... . is 15 and the sum of the squares of its each term is 150, then the sum of ar2, ar4, ar6, .... is ______.


The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.


Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×