English

For what values of x, the terms 43, x, 427 are in G.P.? - Mathematics and Statistics

Advertisements
Advertisements

Question

For what values of x, the terms `4/3`, x, `4/27` are in G.P.?

Sum

Solution

`4/3`, x, `4/27` are in Geometric progression

∴ `"t"_2/"t"_1 = "t"_3/"t"_2`

∴ `"x"/(4/3) = (4/27)/"x"`

∴ x2 = `4/3 xx 4/27`

∴ x2 = `16/81`

∴ x = `± 4/9`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Sequences and Series - Exercise 2.1 [Page 27]

RELATED QUESTIONS

Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.


Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.


If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`


The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

4, −2, 1, −1/2, ...


Find : 

nth term of the G.P.

\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]


Which term of the G.P. :

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]


Which term of the G.P. :

\[\sqrt{3}, 3, 3\sqrt{3}, . . . \text { is } 729 ?\]


Find three numbers in G.P. whose sum is 38 and their product is 1728.


Find the sum of the following geometric series:

\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]


Find the sum of the following geometric series:

x3, x5, x7, ... to n terms


Find the sum of the following series:

0.6 + 0.66 + 0.666 + .... to n terms


How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\]  ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?


Find the sum :

\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]


If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.


Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.


Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.


If a, b, c are in G.P., prove that:

\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]


If a, b, c are in G.P., prove that the following is also in G.P.:

a2, b2, c2


If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.


Insert 5 geometric means between 16 and \[\frac{1}{4}\] .


If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.


If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is 


If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is 


If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is


If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is 


Check whether the following sequence is G.P. If so, write tn.

3, 4, 5, 6, …


The numbers x − 6, 2x and x2 are in G.P. Find x


For the following G.P.s, find Sn.

p, q, `"q"^2/"p", "q"^3/"p"^2,` ...


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`2, 4/3, 8/9, 16/27, ...`


Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"` 


Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.


If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.


If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1


Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.


If the sum of an infinite GP a, ar, ar2, ar3, ...... . is 15 and the sum of the squares of its each term is 150, then the sum of ar2, ar4, ar6, .... is ______.


For an increasing G.P. a1, a2 , a3 ........., an, if a6 = 4a4, a9 – a7 = 192, then the value of `sum_(i = 1)^∞ 1/a_i` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×