Advertisements
Advertisements
Question
Which term of the G.P. :
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]
Solution
\[\text { Here, first term, } a = \sqrt{2} \]
\[\text { and common ratio, }r = \frac{1}{2}\]
\[\text { Let the } n^{th} \text { term be } \frac{1}{512\sqrt{2}} . \]
\[ \therefore a_{n =} \frac{1}{512\sqrt{2}}\]
\[ \Rightarrow a r^{n - 1} = \frac{1}{512\sqrt{2}}\]
\[ \Rightarrow \left( \sqrt{2} \right) \left( \frac{1}{2} \right)^{n - 1} = \frac{1}{512\sqrt{2}}\]
\[ \Rightarrow \left( \frac{1}{2} \right)^{n - 1} = \frac{1}{1024}\]
\[ \Rightarrow \left( \frac{1}{2} \right)^{n - 1} = \left( \frac{1}{2} \right)^{10} \]
\[ \Rightarrow n - 1 = 10 \]
\[ \Rightarrow n = 11\]
\[\text { Thus, the } {11}^{th} \text { term of the given G . P . is } \frac{1}{512\sqrt{2}} .\]
APPEARS IN
RELATED QUESTIONS
The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.
Which term of the following sequence:
`1/3, 1/9, 1/27`, ...., is `1/19683`?
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]
Find:
the ninth term of the G.P. 1, 4, 16, 64, ...
Find:
the 10th term of the G.P.
\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]
Which term of the progression 0.004, 0.02, 0.1, ... is 12.5?
Which term of the G.P. :
\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]
Find three numbers in G.P. whose sum is 65 and whose product is 3375.
Find the sum of the following geometric progression:
1, 3, 9, 27, ... to 8 terms;
Find the sum of the following geometric series:
\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8 terms };\]
Find the sum :
\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]
Find the rational numbers having the following decimal expansion:
\[3 . 5\overline 2\]
Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.
If a, b, c are in G.P., prove that:
a (b2 + c2) = c (a2 + b2)
If a, b, c, d are in G.P., prove that:
\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]
If a, b, c, d are in G.P., prove that:
(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.
If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.
If a, b, c are in A.P. and a, x, b and b, y, c are in G.P., show that x2, b2, y2 are in A.P.
If logxa, ax/2 and logb x are in G.P., then write the value of x.
If the sum of an infinite decreasing G.P. is 3 and the sum of the squares of its term is \[\frac{9}{2}\], then write its first term and common difference.
If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.
If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio
The numbers x − 6, 2x and x2 are in G.P. Find x
For a G.P. a = 2, r = `-2/3`, find S6
For a G.P. if S5 = 1023 , r = 4, Find a
Find the sum to n terms of the sequence.
0.2, 0.02, 0.002, ...
The value of a house appreciates 5% per year. How much is the house worth after 6 years if its current worth is ₹ 15 Lac. [Given: (1.05)5 = 1.28, (1.05)6 = 1.34]
Express the following recurring decimal as a rational number:
`51.0bar(2)`
Select the correct answer from the given alternative.
The common ratio for the G.P. 0.12, 0.24, 0.48, is –
Select the correct answer from the given alternative.
Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –
Answer the following:
For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.
Answer the following:
Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.
For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.
If the sum of an infinite GP a, ar, ar2, ar3, ...... . is 15 and the sum of the squares of its each term is 150, then the sum of ar2, ar4, ar6, .... is ______.
The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.