English

Which Term of the G.P. : √ 2 , 1 √ 2 , 1 2 √ 2 , 1 4 √ 2 , . . . is 1 512 √ 2 ? - Mathematics

Advertisements
Advertisements

Question

Which term of the G.P. :

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]

Solution

\[\text { Here, first term, } a = \sqrt{2} \]

\[\text { and common ratio, }r = \frac{1}{2}\]

\[\text { Let the } n^{th} \text { term be } \frac{1}{512\sqrt{2}} . \]

\[ \therefore a_{n =} \frac{1}{512\sqrt{2}}\]

\[ \Rightarrow a r^{n - 1} = \frac{1}{512\sqrt{2}}\]

\[ \Rightarrow \left( \sqrt{2} \right) \left( \frac{1}{2} \right)^{n - 1} = \frac{1}{512\sqrt{2}}\]

\[ \Rightarrow \left( \frac{1}{2} \right)^{n - 1} = \frac{1}{1024}\]

\[ \Rightarrow \left( \frac{1}{2} \right)^{n - 1} = \left( \frac{1}{2} \right)^{10} \]

\[ \Rightarrow n - 1 = 10 \]

\[ \Rightarrow n = 11\]

\[\text { Thus, the } {11}^{th} \text { term of the given G . P . is } \frac{1}{512\sqrt{2}} .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Geometric Progression - Exercise 20.1 [Page 10]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 20 Geometric Progression
Exercise 20.1 | Q 6.1 | Page 10

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.


Which term of the following sequence:

`1/3, 1/9, 1/27`, ...., is `1/19683`?


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]


Find:
the ninth term of the G.P. 1, 4, 16, 64, ...


Find:

the 10th term of the G.P.

\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]

 


Which term of the progression 0.004, 0.02, 0.1, ... is 12.5?


Which term of the G.P. :

\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]


Find three numbers in G.P. whose sum is 65 and whose product is 3375.


Find the sum of the following geometric progression:

1, 3, 9, 27, ... to 8 terms;


Find the sum of the following geometric series:

\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8  terms };\]


Find the sum :

\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]


Find the rational numbers having the following decimal expansion: 

\[3 . 5\overline 2\]


Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.


If a, b, c are in G.P., prove that:

a (b2 + c2) = c (a2 + b2)


If a, b, c, d are in G.P., prove that:

\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]


If a, b, c, d are in G.P., prove that:

(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.


If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.


If a, b, c are in A.P. and a, x, b and b, y, c are in G.P., show that x2, b2, y2 are in A.P.


If logxa, ax/2 and logb x are in G.P., then write the value of x.


If the sum of an infinite decreasing G.P. is 3 and the sum of the squares of its term is \[\frac{9}{2}\], then write its first term and common difference.


If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.


If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio


The numbers x − 6, 2x and x2 are in G.P. Find x


For a G.P. a = 2, r = `-2/3`, find S6


For a G.P. if S5 = 1023 , r = 4, Find a


Find the sum to n terms of the sequence.

0.2, 0.02, 0.002, ...


The value of a house appreciates 5% per year. How much is the house worth after 6 years if its current worth is ₹ 15 Lac. [Given: (1.05)5 = 1.28, (1.05)6 = 1.34]


Express the following recurring decimal as a rational number:

`51.0bar(2)`


Select the correct answer from the given alternative.

The common ratio for the G.P. 0.12, 0.24, 0.48, is –


Select the correct answer from the given alternative.

Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –


Answer the following:

For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.


Answer the following:

Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.


Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.


For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.


If the sum of an infinite GP a, ar, ar2, ar3, ...... . is 15 and the sum of the squares of its each term is 150, then the sum of ar2, ar4, ar6, .... is ______.


The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×