Advertisements
Advertisements
Question
If a, b, c, d are in G.P., prove that:
(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.
Solution
a, b, c and d are in G.P.
\[\therefore b^2 = ac\]
\[ad = bc \]
\[ c^2 = bd\] .......(1)
\[\left( ab + bc + cd \right)^2 = \left( ab \right)^2 + \left( bc \right)^2 + \left( cd \right)^2 + 2a b^2 c + 2b c^2 d + 2abcd\]
\[ \Rightarrow \left( ab + bc + cd \right)^2 = a^2 b^2 + b^2 c^2 + c^2 d^2 + a b^2 c + a b^2 c + b c^2 d + b c^2 d + abcd + abcd\]
\[ \Rightarrow \left( ab + bc + cd \right)^2 = a^2 b^2 + b^2 c^2 + c^2 d^2 + b^2 \left( b^2 \right) + ac\left( ac \right) + c^2 \left( c^2 \right) + bd\left( bd \right) + bc\left( bc \right) + ad\left( ad \right) \left[ \text { Using } (1) \right]\]
\[ \Rightarrow \left( ab + bc + cd \right)^2 = a^2 b^2 + a^2 c^2 + a^2 d^2 + b^4 + b^2 c^2 + b^2 d^2 + c^2 b^2 + c^4 + c^2 d^2 \]
\[ \Rightarrow \left( ab + bc + cd \right)^2 = a^2 \left( b^2 + c^2 + d^2 \right) + b^2 \left( b^2 + c^2 + d^2 \right) + c^2 \left( b^2 + c^2 + d^2 \right)\]
\[ \Rightarrow \left( ab + bc + cd \right)^2 = \left( b^2 + c^2 + d^2 \right)\left( a^2 + b^2 + c^2 \right)\]
\[\text { Therefore, }\left( a^2 + b^2 + c^2 \right), \left( ab + bc + cd \right) \text{ and }\left( b^2 + c^2 + d^2 \right) \text {are also in G . P } .\]
APPEARS IN
RELATED QUESTIONS
Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`
Which term of the following sequence:
`2, 2sqrt2, 4,.... is 128`
Which term of the progression 0.004, 0.02, 0.1, ... is 12.5?
If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.
The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.
The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.
The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.
Find the sum of the following geometric series:
(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;
Evaluate the following:
\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]
If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.
Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.
Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.
One side of an equilateral triangle is 18 cm. The mid-points of its sides are joined to form another triangle whose mid-points, in turn, are joined to form still another triangle. The process is continued indefinitely. Find the sum of the (i) perimeters of all the triangles. (ii) areas of all triangles.
Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.
If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.
If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)
If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.
If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.
The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .
If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.
If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is
The fractional value of 2.357 is
The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is
The two geometric means between the numbers 1 and 64 are
Check whether the following sequence is G.P. If so, write tn.
2, 6, 18, 54, …
Check whether the following sequence is G.P. If so, write tn.
1, –5, 25, –125 …
Check whether the following sequence is G.P. If so, write tn.
`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...
For the G.P. if r = `1/3`, a = 9 find t7
Which term of the G.P. 5, 25, 125, 625, … is 510?
The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz
Find the sum to n terms of the sequence.
0.2, 0.02, 0.002, ...
Find: `sum_("r" = 1)^10 5 xx 3^"r"`
The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.
Select the correct answer from the given alternative.
Which term of the geometric progression 1, 2, 4, 8, ... is 2048
Select the correct answer from the given alternative.
Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)
Answer the following:
Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...
Answer the following:
Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`
The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is 216 cm3 and the total surface area is 252cm2. The length of the longest edge is ______.
The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.
The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.