Advertisements
Advertisements
Question
One side of an equilateral triangle is 18 cm. The mid-points of its sides are joined to form another triangle whose mid-points, in turn, are joined to form still another triangle. The process is continued indefinitely. Find the sum of the (i) perimeters of all the triangles. (ii) areas of all triangles.
Solution
According to the midpoint theorem, the sides of each triangle formed by joining the midpoints of an equilateral triangle are half of the sides of the equilateral triangle. In other words, the triangles formed are equilateral triangles with sides 18 cm, 9 cm, 4.5 cm, 2.25 cm, ...
\[(i) \text { Sum of the perimeters of all the triangles }, P = 3 \times 18 + 3 \times 9 + 3 \times 4 . 5 + 3 \times 2 . 25 + . . . \infty \]
\[ \Rightarrow P = 3 \times \left( 18 + 9 + 4 . 5 + 2 . 25 + . . . \infty \right)\]
\[\text { It is a G . P . with a = 18 and r } = \frac{1}{2} . \]
\[ \therefore P = 3 \times \left( \frac{18}{1 - \frac{1}{2}} \right)\]
\[ \Rightarrow P = 3 \times 36 = 108 cm\]
\[(ii) \text { Sum of the areas of all the triangles, A } = \frac{\sqrt{3}}{4} \left( 18 \right)^2 + \frac{\sqrt{3}}{4} \left( 9 \right)^2 + \frac{\sqrt{3}}{4} \left( 4 . 5 \right)^2 + . . . \infty \]
\[ \Rightarrow A = \frac{\sqrt{3}}{4}\left( \left( 18 \right)^2 + \left( 9 \right)^2 + \left( 4 . 5 \right)^2 + . . . \infty \right)\]
\[\text { It is a G . P . with a } = \left( 18 \right)^2 \text { and } r = \frac{1}{4} . \]
\[ \therefore A = \frac{\sqrt{3}}{4}\left( \frac{\left( 18 \right)^2}{1 - \frac{1}{4}} \right)\]
\[ \Rightarrow A = \frac{\sqrt{3}}{3} \times 324\]
\[ \Rightarrow A = 108\sqrt{3} {cm}^2\]
APPEARS IN
RELATED QUESTIONS
For what values of x, the numbers `-2/7, x, -7/2` are in G.P?
The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.
Find the value of n so that `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.
Which term of the G.P. :
\[2, 2\sqrt{2}, 4, . . .\text { is }128 ?\]
If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.
Find the sum of the following geometric series:
\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8 terms };\]
Evaluate the following:
\[\sum^{11}_{n = 1} (2 + 3^n )\]
If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.
Express the recurring decimal 0.125125125 ... as a rational number.
Find the rational number whose decimal expansion is \[0 . 423\].
The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.
If a, b, c, d are in G.P., prove that:
(b + c) (b + d) = (c + a) (c + d)
If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)
Find the geometric means of the following pairs of number:
2 and 8
If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is
In a G.P. of even number of terms, the sum of all terms is five times the sum of the odd terms. The common ratio of the G.P. is
Mark the correct alternative in the following question:
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to
Check whether the following sequence is G.P. If so, write tn.
7, 14, 21, 28, …
For what values of x, the terms `4/3`, x, `4/27` are in G.P.?
The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz
For a G.P. if a = 2, r = 3, Sn = 242 find n
For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.
If one invests Rs. 10,000 in a bank at a rate of interest 8% per annum, how long does it take to double the money by compound interest? [(1.08)5 = 1.47]
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`2, 4/3, 8/9, 16/27, ...`
Express the following recurring decimal as a rational number:
`0.bar(7)`
If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term
Find : `sum_("r" = 1)^oo 4(0.5)^"r"`
Find GM of two positive numbers whose A.M. and H.M. are 75 and 48
Answer the following:
Find three numbers in G.P. such that their sum is 35 and their product is 1000
Answer the following:
If p, q, r, s are in G.P., show that (p2 + q2 + r2) (q2 + r2 + s2) = (pq + qr + rs)2
In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.
The sum or difference of two G.P.s, is again a G.P.
If the sum of an infinite GP a, ar, ar2, ar3, ...... . is 15 and the sum of the squares of its each term is 150, then the sum of ar2, ar4, ar6, .... is ______.
The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.
For an increasing G.P. a1, a2 , a3 ........., an, if a6 = 4a4, a9 – a7 = 192, then the value of `sum_(i = 1)^∞ 1/a_i` is ______.
If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.