Advertisements
Advertisements
Question
Find : `sum_("r" = 1)^oo 4(0.5)^"r"`
Solution
`sum_("r" = 1)^oo 4(0.5)^"r" = 4 sum_("r" = 1)^oo (0.5)^"r"`
= 4[0.5 + (0.5)2 + (0.5)3 + ...]
= `4[5/10 + (5/10)^2 + (5/10)^3 + ...]`
= `4[1/2 + (1/2)^2 + (1/2)^3 + ....]` ...(1)
The terms `1/2, (1/2)^2, (1/2)^3` ... form a G.P. with
a = `1/2`, r = `1/2`
Since |r| = `|1/2| = 1/2 < 1`, the sum to infinity of this G.P. exist and
S = `"a"/(1 - "r")`
= `((1/2))/(1 - (1/2))` = 1
∴ from (1),
`sum_("r" = 1)^oo 4(0.5)^"r"` = 4 x 1 = 4.
APPEARS IN
RELATED QUESTIONS
The sum of first three terms of a G.P. is `39/10` and their product is 1. Find the common ratio and the terms.
Find the sum to n terms of the sequence, 8, 88, 888, 8888… .
If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.
The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.
If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.
If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
4, −2, 1, −1/2, ...
Find:
the 10th term of the G.P.
\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]
Which term of the G.P. :
\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]
The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.
In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.
If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].
Find the sum of the following geometric progression:
1, −1/2, 1/4, −1/8, ... to 9 terms;
Find the sum of the following geometric series:
\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]
The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.
Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.
One side of an equilateral triangle is 18 cm. The mid-points of its sides are joined to form another triangle whose mid-points, in turn, are joined to form still another triangle. The process is continued indefinitely. Find the sum of the (i) perimeters of all the triangles. (ii) areas of all triangles.
The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.
If a, b, c, d are in G.P., prove that:
\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]
If a, b, c, d are in G.P., prove that:
(a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2
If a, b, c are in G.P., then prove that:
The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is
If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is
Check whether the following sequence is G.P. If so, write tn.
1, –5, 25, –125 …
The numbers 3, x, and x + 6 form are in G.P. Find x
The numbers 3, x, and x + 6 form are in G.P. Find nth term
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 10 years.
Find the sum to n terms of the sequence.
0.2, 0.02, 0.002, ...
If one invests Rs. 10,000 in a bank at a rate of interest 8% per annum, how long does it take to double the money by compound interest? [(1.08)5 = 1.47]
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`
Express the following recurring decimal as a rational number:
`51.0bar(2)`
If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.
Answer the following:
If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q
If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1
The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is 216 cm3 and the total surface area is 252cm2. The length of the longest edge is ______.
If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.
The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.
For an increasing G.P. a1, a2 , a3 ........., an, if a6 = 4a4, a9 – a7 = 192, then the value of `sum_(i = 1)^∞ 1/a_i` is ______.
If 0 < x, y, a, b < 1, then the sum of the infinite terms of the series `sqrt(x)(sqrt(a) + sqrt(x)) + sqrt(x)(sqrt(ab) + sqrt(xy)) + sqrt(x)(bsqrt(a) + ysqrt(x)) + ...` is ______.