English

Find : ∑r=1∞(-13)r - Mathematics and Statistics

Advertisements
Advertisements

Question

Find : `sum_("r" = 1)^oo (-1/3)^"r"`

Sum

Solution

`sum_("r" = 1)^oo (-1/3)^"r"`

= `(-1/3) + (-1/3)^2 + (-1/3)^3 + ...`

The terms `(-1/3), (-1/3)^2, (-1/3)^3` are in G.P.

∴ a = `-1/3`, r = `-1/3`

Since, |r| = `|-1/3| < 1`

∴ sum to infinity exists.

∴ `sum_("r" = 1)^oo (-1/3)^"r" = (-1/3)/(1 - (-1/3))`

= `(-1/3)/(4/3)`

= `-1/4`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Sequences and Series - Exercise 2.3 [Page 34]

APPEARS IN

RELATED QUESTIONS

Which term of the following sequence: 

`2, 2sqrt2, 4,.... is 128`


Which term of the following sequence:

`sqrt3, 3, 3sqrt3`, .... is 729?


Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).


If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .


if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.


If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.


Which term of the progression 0.004, 0.02, 0.1, ... is 12.5?


Which term of the G.P. :

\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]


Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.


Find the sum of the following geometric series:

(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;


Find the sum of the following geometric series:

\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text {  to n terms }\]


How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?


Let an be the nth term of the G.P. of positive numbers.

Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.


Find the sum of the following series to infinity:

10 − 9 + 8.1 − 7.29 + ... ∞


Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.


Express the recurring decimal 0.125125125 ... as a rational number.


If a, b, c are in G.P., prove that:

\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]


If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.


If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is


If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]


Check whether the following sequence is G.P. If so, write tn.

7, 14, 21, 28, …


A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 3 years.


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.


The numbers x − 6, 2x and x2 are in G.P. Find 1st term


The numbers x − 6, 2x and x2 are in G.P. Find nth term


For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r


Find: `sum_("r" = 1)^10(3 xx 2^"r")`


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`2, 4/3, 8/9, 16/27, ...`


The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares


A ball is dropped from a height of 10m. It bounces to a height of 6m, then 3.6m and so on. Find the total distance travelled by the ball


Answer the following:

For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.


Answer the following:

If for a G.P. first term is (27)2 and seventh term is (8)2, find S8 


Answer the following:

If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0


If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.


If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1


Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.


Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×