English

A ball is dropped from a height of 80 ft. The ball is such that it rebounds (34)th of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth - Mathematics and Statistics

Advertisements
Advertisements

Question

A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?

Sum

Solution

Here, a = 80, r = `3/4`

1st height in the bounce = `80 xx 3/4`

Height in the 6th bounce = `80 xx 3/4 xx (3/4)^5`

= `80 xx (3/4)^6`

= Height in the nth bounce = `80(3/4)^"n"`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Sequences and Series - Exercise 2.1 [Page 27]

RELATED QUESTIONS

The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.


Find the sum to n terms of the sequence, 8, 88, 888, 8888… .


Find the value of n so that  `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.


If f is a function satisfying f (x +y) = f(x) f(y) for all x, y ∈ N such that f(1) = 3 and `sum_(x = 1)^n` f(x) = 120, find the value of n.


Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...


Find :

the 12th term of the G.P.

\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]


If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.


The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.

 

Find the sum of the following geometric progression:

2, 6, 18, ... to 7 terms;


Find the sum of the following geometric series:

 0.15 + 0.015 + 0.0015 + ... to 8 terms;


Find the rational numbers having the following decimal expansion: 

\[0 .\overline {231 }\]


If a, b, c are in G.P., prove that:

\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]


If a, b, c, d are in G.P., prove that:

(b + c) (b + d) = (c + a) (c + d)


If a, b, c, d are in G.P., prove that:

(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.


Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .


Find the geometric means of the following pairs of number:

−8 and −2


If the fifth term of a G.P. is 2, then write the product of its 9 terms.


If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is 


The value of 91/3 . 91/9 . 91/27 ... upto inf, is 


The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is 


Let x be the A.M. and yz be two G.M.s between two positive numbers. Then, \[\frac{y^3 + z^3}{xyz}\]  is equal to 


In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is 


Check whether the following sequence is G.P. If so, write tn.

`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...


Check whether the following sequence is G.P. If so, write tn.

3, 4, 5, 6, …


Which term of the G.P. 5, 25, 125, 625, … is 510?


The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz


The numbers 3, x, and x + 6 form are in G.P. Find nth term


The numbers x − 6, 2x and x2 are in G.P. Find 1st term


For the following G.P.s, find Sn.

p, q, `"q"^2/"p", "q"^3/"p"^2,` ...


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`2, 4/3, 8/9, 16/27, ...`


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

9, 8.1, 7.29, ...


Express the following recurring decimal as a rational number:

`2.3bar(5)`


If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.


Find : `sum_("r" = 1)^oo 4(0.5)^"r"`


Answer the following:

Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.


Answer the following:

If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q


At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.


The third term of G.P. is 4. The product of its first 5 terms is ______.


If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×