Advertisements
Advertisements
Question
A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?
Solution
Here, a = 80, r = `3/4`
1st height in the bounce = `80 xx 3/4`
Height in the 6th bounce = `80 xx 3/4 xx (3/4)^5`
= `80 xx (3/4)^6`
= Height in the nth bounce = `80(3/4)^"n"`
APPEARS IN
RELATED QUESTIONS
The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.
Find the sum to n terms of the sequence, 8, 88, 888, 8888… .
Find the value of n so that `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.
If f is a function satisfying f (x +y) = f(x) f(y) for all x, y ∈ N such that f(1) = 3 and `sum_(x = 1)^n` f(x) = 120, find the value of n.
Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...
Find :
the 12th term of the G.P.
\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]
If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.
The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.
Find the sum of the following geometric progression:
2, 6, 18, ... to 7 terms;
Find the sum of the following geometric series:
0.15 + 0.015 + 0.0015 + ... to 8 terms;
Find the rational numbers having the following decimal expansion:
\[0 .\overline {231 }\]
If a, b, c are in G.P., prove that:
\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]
If a, b, c, d are in G.P., prove that:
(b + c) (b + d) = (c + a) (c + d)
If a, b, c, d are in G.P., prove that:
(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.
Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .
Find the geometric means of the following pairs of number:
−8 and −2
If the fifth term of a G.P. is 2, then write the product of its 9 terms.
If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is
The value of 91/3 . 91/9 . 91/27 ... upto inf, is
The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is
Let x be the A.M. and y, z be two G.M.s between two positive numbers. Then, \[\frac{y^3 + z^3}{xyz}\] is equal to
In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is
Check whether the following sequence is G.P. If so, write tn.
`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...
Check whether the following sequence is G.P. If so, write tn.
3, 4, 5, 6, …
Which term of the G.P. 5, 25, 125, 625, … is 510?
The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz
The numbers 3, x, and x + 6 form are in G.P. Find nth term
The numbers x − 6, 2x and x2 are in G.P. Find 1st term
For the following G.P.s, find Sn.
p, q, `"q"^2/"p", "q"^3/"p"^2,` ...
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`2, 4/3, 8/9, 16/27, ...`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
9, 8.1, 7.29, ...
Express the following recurring decimal as a rational number:
`2.3bar(5)`
If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.
Find : `sum_("r" = 1)^oo 4(0.5)^"r"`
Answer the following:
Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.
Answer the following:
If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q
At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.
The third term of G.P. is 4. The product of its first 5 terms is ______.
If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.