Advertisements
Advertisements
Question
The number of bacteria in a culture doubles every hour. If there were 50 bacteria originally in the culture, how many bacteria will be there at the end of 5thhour?
Solution
a = 50
r = 2
n = 5
we have,
tn = a. r(n - 1)
To find the number of bacteria at the end of the 5th hour
(i.e, to find the number of bacteria at the beginning of the 6th hour, i.e, to find t6.)
t6 = ar5
= `50 × (2)5
= 50 × 32
t6 =1600
∴ After the 6th hour 1600 bacteria will be there in the culture.
APPEARS IN
RELATED QUESTIONS
Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…
Find the value of n so that `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.
If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.
Find :
nth term of the G.P.
\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]
Find :
the 10th term of the G.P.
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]
Which term of the G.P. :
\[2, 2\sqrt{2}, 4, . . .\text { is }128 ?\]
Which term of the progression 18, −12, 8, ... is \[\frac{512}{729}\] ?
The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.
If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].
The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.
Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.
Find the sum of the following geometric progression:
2, 6, 18, ... to 7 terms;
Find the sum of the following geometric series:
1, −a, a2, −a3, ....to n terms (a ≠ 1)
Evaluate the following:
\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]
The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.
Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.
If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)
If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.
Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals
The two geometric means between the numbers 1 and 64 are
Check whether the following sequence is G.P. If so, write tn.
`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...
Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.
The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 3 years.
For the following G.P.s, find Sn
0.7, 0.07, 0.007, .....
For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r
For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.
The value of a house appreciates 5% per year. How much is the house worth after 6 years if its current worth is ₹ 15 Lac. [Given: (1.05)5 = 1.28, (1.05)6 = 1.34]
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`
Express the following recurring decimal as a rational number:
`2.bar(4)`
Express the following recurring decimal as a rational number:
`2.3bar(5)`
Express the following recurring decimal as a rational number:
`51.0bar(2)`
The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.
Answer the following:
Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.
Answer the following:
If for a G.P. t3 = `1/3`, t6 = `1/81` find r
Answer the following:
Find `sum_("r" = 1)^"n" (2/3)^"r"`
In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.
If the sum of an infinite GP a, ar, ar2, ar3, ...... . is 15 and the sum of the squares of its each term is 150, then the sum of ar2, ar4, ar6, .... is ______.