Advertisements
Advertisements
Question
The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.
Solution
Let the required G.P. be a, ar, ar2, ar3, …
Sum to infinity of this G.P. = 5
∴ 5 = `"a"/(1 - "r")`
∴ a = 5(1 – r) ...(i)
Also, the sum of the squares of the terms is 15.
∴ (a2 + a2r2 + a2r4 + …) = 15
∴ 15 = `"a"^2/(1 - "r"^2)`
∴ 15 (1 – r2) = a2
∴ 15(1 – r)(1 + r) = 25 (1 – r)2 ...[From (i)]
∴ 3 (1 + r) = 5 (1 – r)
∴ 3 + 3r = 5 – 5r
∴ 8r = 2
∴ r = `1/4`
∴ a = `5(1 - 1/4) = 5(3/4) = 15/4`
∴ Required G.P. is a, ar, ar2, ar3, …
i.e., `15/4, 15/16, 15/64, ...`
APPEARS IN
RELATED QUESTIONS
The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.
Which term of the following sequence:
`2, 2sqrt2, 4,.... is 128`
The sum of first three terms of a G.P. is `39/10` and their product is 1. Find the common ratio and the terms.
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.
Insert two numbers between 3 and 81 so that the resulting sequence is G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
−2/3, −6, −54, ...
If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.
Find the sum of the following geometric progression:
1, −1/2, 1/4, −1/8, ... to 9 terms;
Find the sum of the following geometric series:
0.15 + 0.015 + 0.0015 + ... to 8 terms;
Find the sum of the following geometric series:
\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]
Evaluate the following:
\[\sum^{11}_{n = 1} (2 + 3^n )\]
Evaluate the following:
\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]
Find the sum of the following serie:
5 + 55 + 555 + ... to n terms;
Find the sum of the following series:
0.6 + 0.66 + 0.666 + .... to n terms
How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\] ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?
The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.
The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.
Express the recurring decimal 0.125125125 ... as a rational number.
If a, b, c are in G.P., prove that log a, log b, log c are in A.P.
If a, b, c are in G.P., prove that:
(a + 2b + 2c) (a − 2b + 2c) = a2 + 4c2.
If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)
Insert 5 geometric means between 16 and \[\frac{1}{4}\] .
Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .
The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .
If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is
Let x be the A.M. and y, z be two G.M.s between two positive numbers. Then, \[\frac{y^3 + z^3}{xyz}\] is equal to
Check whether the following sequence is G.P. If so, write tn.
1, –5, 25, –125 …
Which term of the G.P. 5, 25, 125, 625, … is 510?
Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.
For the following G.P.s, find Sn.
`sqrt(5)`, −5, `5sqrt(5)`, −25, ...
For a G.P. a = 2, r = `-2/3`, find S6
Find: `sum_("r" = 1)^10(3 xx 2^"r")`
Select the correct answer from the given alternative.
Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –
Answer the following:
Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...
Answer the following:
Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.
If 0 < x, y, a, b < 1, then the sum of the infinite terms of the series `sqrt(x)(sqrt(a) + sqrt(x)) + sqrt(x)(sqrt(ab) + sqrt(xy)) + sqrt(x)(bsqrt(a) + ysqrt(x)) + ...` is ______.