हिंदी

The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.

योग

उत्तर

Let the required G.P. be a, ar, ar2, ar3, …

Sum to infinity of this G.P. = 5

∴ 5 = `"a"/(1 - "r")`

∴ a = 5(1 – r)     ...(i)

Also, the sum of the squares of the terms is 15.

∴ (a2 + a2r2 + a2r4 + …) = 15

∴ 15 = `"a"^2/(1 - "r"^2)`

∴ 15 (1 – r2) = a2

∴ 15(1 – r)(1 + r) = 25 (1 – r)2    ...[From (i)]

∴ 3 (1 + r) = 5 (1 – r)

∴ 3 + 3r = 5 – 5r

∴ 8r = 2

∴ r = `1/4`

∴ a = `5(1 - 1/4) = 5(3/4) = 15/4`

∴ Required G.P. is a, ar, ar2, ar3, …

i.e., `15/4, 15/16, 15/64, ...`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Sequences and Series - Exercise 2.3 [पृष्ठ ३४]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 2 Sequences and Series
Exercise 2.3 | Q 5 | पृष्ठ ३४

संबंधित प्रश्न

The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.


Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.


Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.


If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .


If f is a function satisfying f (x +y) = f(x) f(y) for all x, y ∈ N such that f(1) = 3 and `sum_(x = 1)^n` f(x) = 120, find the value of n.


Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...


If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.


If \[\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}\] (x ≠ 0), then show that abc and d are in G.P.


Find the sum of the following geometric series:

\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8  terms };\]


Find the sum of the following geometric series:

(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;


The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.


The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.


If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.


Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.


Find the rational number whose decimal expansion is \[0 . 423\].


If a, b, c are in G.P., prove that:

a (b2 + c2) = c (a2 + b2)


If a, b, c are in G.P., prove that:

\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]


Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .


If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.

 

 

 


If A1, A2 be two AM's and G1G2 be two GM's between and b, then find the value of \[\frac{A_1 + A_2}{G_1 G_2}\]


If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.


If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is 


If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to


If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is


The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is 


If A be one A.M. and pq be two G.M.'s between two numbers, then 2 A is equal to 


Check whether the following sequence is G.P. If so, write tn.

7, 14, 21, 28, …


If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio


Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.


For a G.P. if S5 = 1023 , r = 4, Find a


Express the following recurring decimal as a rational number:

`0.bar(7)`


If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term


Find : `sum_("r" = 1)^oo (-1/3)^"r"`


Answer the following:

In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term


Answer the following:

If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q


Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.


For an increasing G.P. a1, a2 , a3 ........., an, if a6 = 4a4, a9 – a7 = 192, then the value of `sum_(i = 1)^∞ 1/a_i` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×