हिंदी

Answer the following: If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q

योग

उत्तर

Let A be the first term and R be the common ratio of the G.P.

Then tn = ARn–1

Now, tp = x, tq = y and tr = z

∴ ARp–1 = x, ARq–1 = y and ARr–1 = z

∴ xq–r .yr–p .zp–q 

= (ARp–1)q–r . (ARq–1)r–p . (ARr–1)p–q

`="A"^("q"–"r") * "R"^("pq"–"pr"–"q"+"r") * "A"^("r"–"p") * "R"^("qr"–"pq"-"r"+"p") * "A"^("p"–"q") *"R"^("pr"–"qr"–"p"+"q")`

= `"A"^("q"–"r"+"r"–"p"+"p"-"q") * "R"^("pq"–"pr"–"q"+"r"+"qr"–"pq"–"r"+"p"+"pr"–"qr"–""p"+"q")`

= A° · R° 

= 1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Sequences and Series - Miscellaneous Exercise 2.2 [पृष्ठ ४२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 2 Sequences and Series
Miscellaneous Exercise 2.2 | Q II. (26) | पृष्ठ ४२

संबंधित प्रश्न

Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

−2/3, −6, −54, ...


Find the 4th term from the end of the G.P.

\[\frac{2}{27}, \frac{2}{9}, \frac{2}{3}, . . . , 162\]

The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.


Evaluate the following:

\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]


Find the sum of the following series:

7 + 77 + 777 + ... to n terms;


How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\]  ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?


The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.


Find the rational numbers having the following decimal expansion: 

\[0 .\overline {231 }\]


Find the rational numbers having the following decimal expansion: 

\[0 . 6\overline8\]


One side of an equilateral triangle is 18 cm. The mid-points of its sides are joined to form another triangle whose mid-points, in turn, are joined to form still another triangle. The process is continued indefinitely. Find the sum of the (i) perimeters of all the triangles. (ii) areas of all triangles.


If a, b, c are in G.P., prove that:

a (b2 + c2) = c (a2 + b2)


If a, b, c, d are in G.P., prove that:

(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.


If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.


The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .


If the first term of a G.P. a1a2a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is


If A be one A.M. and pq be two G.M.'s between two numbers, then 2 A is equal to 


If pq be two A.M.'s and G be one G.M. between two numbers, then G2


For the G.P. if r = `1/3`, a = 9 find t7


If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.


For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r


Find the sum to n terms of the sequence.

0.2, 0.02, 0.002, ...


Find: `sum_("r" = 1)^10(3 xx 2^"r")`


The value of a house appreciates 5% per year. How much is the house worth after 6 years if its current worth is ₹ 15 Lac. [Given: (1.05)5 = 1.28, (1.05)6 = 1.34]


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`1/2, 1/4, 1/8, 1/16,...`


Express the following recurring decimal as a rational number:

`0.bar(7)`


Express the following recurring decimal as a rational number:

`2.bar(4)`


If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.


Select the correct answer from the given alternative.

Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –


Answer the following:

Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...


In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.


For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.


The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.


For an increasing G.P. a1, a2 , a3 ........., an, if a6 = 4a4, a9 – a7 = 192, then the value of `sum_(i = 1)^∞ 1/a_i` is ______.


Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×