Advertisements
Advertisements
प्रश्न
Find the rational numbers having the following decimal expansion:
\[0 . 6\overline8\]
उत्तर
\[0 . 6\overline8\]
\[\text { Let } S = 0 . 6\overline8\]
\[ \Rightarrow S = 0 . 6 + 0 . 08 + 0 . 008 + 0 . 0008 + 0 . 00008 + . . . \infty \]
\[ \Rightarrow S = 0 . 6 + 0 . 08\left( 1 + {10}^{- 1} + {10}^{- 2} + {10}^{- 3} + . . . \infty \right)\]
\[\text { It is a G . P } . \]
\[ \therefore S = 0 . 6 + 0 . 08\left( \frac{1}{1 - {10}^{- 1}} \right)\]
\[ \Rightarrow S = 0 . 6 + \frac{0 . 8}{9}\]
\[ \Rightarrow S = \frac{6 . 2}{9}\]
\[ \Rightarrow S = \frac{62}{90} = \frac{31}{45}\]
APPEARS IN
संबंधित प्रश्न
If f is a function satisfying f (x +y) = f(x) f(y) for all x, y ∈ N such that f(1) = 3 and `sum_(x = 1)^n` f(x) = 120, find the value of n.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
−2/3, −6, −54, ...
Which term of the G.P. :
\[2, 2\sqrt{2}, 4, . . .\text { is }128 ?\]
The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.
If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.
If \[\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}\] (x ≠ 0), then show that a, b, c and d are in G.P.
Find three numbers in G.P. whose sum is 38 and their product is 1728.
Find the sum of the following geometric series:
\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]
Find the sum of the following series:
7 + 77 + 777 + ... to n terms;
The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.
If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].
How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?
A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.
Find the sum of the following serie to infinity:
8 + \[4\sqrt{2}\] + 4 + ... ∞
Find the sum of the following serie to infinity:
`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`
If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.
If a, b, c, d are in G.P., prove that:
(b + c) (b + d) = (c + a) (c + d)
If a, b, c are in G.P., prove that the following is also in G.P.:
a3, b3, c3
If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.
If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.
Insert 6 geometric means between 27 and \[\frac{1}{81}\] .
Write the product of n geometric means between two numbers a and b.
If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is
Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals
Mark the correct alternative in the following question:
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to
Check whether the following sequence is G.P. If so, write tn.
2, 6, 18, 54, …
The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz
The numbers x − 6, 2x and x2 are in G.P. Find x
For the following G.P.s, find Sn
3, 6, 12, 24, ...
For the following G.P.s, find Sn.
p, q, `"q"^2/"p", "q"^3/"p"^2,` ...
For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r
For a G.P. If t3 = 20 , t6 = 160 , find S7
Express the following recurring decimal as a rational number:
`2.3bar(5)`
Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.
Select the correct answer from the given alternative.
The common ratio for the G.P. 0.12, 0.24, 0.48, is –
Select the correct answer from the given alternative.
If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?
Select the correct answer from the given alternative.
If common ratio of the G.P is 5, 5th term is 1875, the first term is -
If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1