हिंदी

If A, B, C Are in G.P., Prove that 1 Log a M , 1 Log B M , 1 Log C M Are in A.P. - Mathematics

Advertisements
Advertisements

प्रश्न

If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.

उत्तर

a, b, c are in G.P.

\[\therefore b^2 = ac \]

\[\text { Now taking } lo g_m \text { on both the sides: } \]

\[ \Rightarrow lo g_m \left( b \right)^2 = lo g_m \left( ac \right)\]

\[ \Rightarrow 2lo g_m \left( b \right) = lo g_m a + lo g_m \left( c \right)\]

\[ \Rightarrow \frac{2}{\log_b \left( m \right)} = \frac{1}{\log_a \left( m \right)} + \frac{1}{\log_c \left( m \right)}\]

\[\text { Thus }, \frac{1}{\log_a \left( m \right)}, \frac{1}{\log_b \left( m \right)} \text { and } \frac{1}{\log_c \left( m \right)} \text { are in A . P } . \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Geometric Progression - Exercise 20.5 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 20 Geometric Progression
Exercise 20.5 | Q 2 | पृष्ठ ४५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.


Evaluate `sum_(k=1)^11 (2+3^k )`


Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.


If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.


Find :

the 8th term of the G.P. 0.3, 0.06, 0.012, ...


In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.


Find the sum of the following geometric series:

 0.15 + 0.015 + 0.0015 + ... to 8 terms;


Evaluate the following:

\[\sum^{10}_{n = 2} 4^n\]


Find the sum of the following series:

0.6 + 0.66 + 0.666 + .... to n terms


If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).


If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.


Find the rational numbers having the following decimal expansion: 

\[0 .\overline {231 }\]


Find the rational numbers having the following decimal expansion: 

\[3 . 5\overline 2\]


If a, b, c are in G.P., prove that:

\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]


If a, b, c, d are in G.P., prove that:

\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]


If a, b, c are in G.P., prove that the following is also in G.P.:

a2 + b2, ab + bc, b2 + c2


Find the geometric means of the following pairs of number:

2 and 8


The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .


Write the product of n geometric means between two numbers a and b

 


If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to


The value of 91/3 . 91/9 . 91/27 ... upto inf, is 


If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is


If abc are in G.P. and xy are AM's between ab and b,c respectively, then 


Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals 


The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to 


Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1


The numbers 3, x, and x + 6 form are in G.P. Find 20th term.


For the following G.P.s, find Sn

0.7, 0.07, 0.007, .....


If one invests Rs. 10,000 in a bank at a rate of interest 8% per annum, how long does it take to double the money by compound interest? [(1.08)5 = 1.47]


Find : `sum_("r" = 1)^oo 4(0.5)^"r"`


Find : `sum_("r" = 1)^oo (-1/3)^"r"`


Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"` 


Select the correct answer from the given alternative.

The sum of 3 terms of a G.P. is `21/4` and their product is 1 then the common ratio is –


Answer the following:

Find three numbers in G.P. such that their sum is 35 and their product is 1000


Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.


If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×