Advertisements
Advertisements
प्रश्न
If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.
उत्तर
a, b, c are in G.P.
\[\therefore b^2 = ac \]
\[\text { Now taking } lo g_m \text { on both the sides: } \]
\[ \Rightarrow lo g_m \left( b \right)^2 = lo g_m \left( ac \right)\]
\[ \Rightarrow 2lo g_m \left( b \right) = lo g_m a + lo g_m \left( c \right)\]
\[ \Rightarrow \frac{2}{\log_b \left( m \right)} = \frac{1}{\log_a \left( m \right)} + \frac{1}{\log_c \left( m \right)}\]
\[\text { Thus }, \frac{1}{\log_a \left( m \right)}, \frac{1}{\log_b \left( m \right)} \text { and } \frac{1}{\log_c \left( m \right)} \text { are in A . P } . \]
APPEARS IN
संबंधित प्रश्न
Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.
Evaluate `sum_(k=1)^11 (2+3^k )`
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.
If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.
Find :
the 8th term of the G.P. 0.3, 0.06, 0.012, ...
In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.
Find the sum of the following geometric series:
0.15 + 0.015 + 0.0015 + ... to 8 terms;
Evaluate the following:
\[\sum^{10}_{n = 2} 4^n\]
Find the sum of the following series:
0.6 + 0.66 + 0.666 + .... to n terms
If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).
If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.
Find the rational numbers having the following decimal expansion:
\[0 .\overline {231 }\]
Find the rational numbers having the following decimal expansion:
\[3 . 5\overline 2\]
If a, b, c are in G.P., prove that:
\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]
If a, b, c, d are in G.P., prove that:
\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]
If a, b, c are in G.P., prove that the following is also in G.P.:
a2 + b2, ab + bc, b2 + c2
Find the geometric means of the following pairs of number:
2 and 8
The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .
Write the product of n geometric means between two numbers a and b.
If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to
The value of 91/3 . 91/9 . 91/27 ... upto inf, is
If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is
If a, b, c are in G.P. and x, y are AM's between a, b and b,c respectively, then
Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals
The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to
Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1
The numbers 3, x, and x + 6 form are in G.P. Find 20th term.
For the following G.P.s, find Sn
0.7, 0.07, 0.007, .....
If one invests Rs. 10,000 in a bank at a rate of interest 8% per annum, how long does it take to double the money by compound interest? [(1.08)5 = 1.47]
Find : `sum_("r" = 1)^oo 4(0.5)^"r"`
Find : `sum_("r" = 1)^oo (-1/3)^"r"`
Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"`
Select the correct answer from the given alternative.
The sum of 3 terms of a G.P. is `21/4` and their product is 1 then the common ratio is –
Answer the following:
Find three numbers in G.P. such that their sum is 35 and their product is 1000
Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.
If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.