Advertisements
Advertisements
प्रश्न
Find the rational numbers having the following decimal expansion:
\[3 . 5\overline 2\]
उत्तर
\[ 3 . 5\overline 2\]
\[\text { Let } S = 3 . 5\overline 2\]
\[ \Rightarrow S = 3 . 5 + 0 . 02 + 0 . 002 + 0002 + 0 . 00002 + . . . \infty \]
\[ \Rightarrow S = 3 . 5 + 0 . 02\left( 1 + {10}^{- 1} + {10}^{- 2} + {10}^{- 3} + {10}^{- 4} + . . . \infty \right)\]
\[\text { It is a G . P } . \]
\[ \therefore S = 3 . 5 + 0 . 02\left( \frac{1}{1 - {10}^{- 1}} \right)\]
\[ \Rightarrow S = 3 . 5 + \frac{0 . 2}{9}\]
\[ \Rightarrow S = \frac{317}{90}\]
APPEARS IN
संबंधित प्रश्न
Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.
Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).
Evaluate `sum_(k=1)^11 (2+3^k )`
Given a G.P. with a = 729 and 7th term 64, determine S7.
Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.
If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.
Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio
The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.
If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.
If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.
Which term of the G.P. :
\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]
In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.
Find the sum of the following geometric series:
0.15 + 0.015 + 0.0015 + ... to 8 terms;
Find the sum of the following series:
7 + 77 + 777 + ... to n terms;
The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.
Find the sum :
\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]
Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.
Find the rational numbers having the following decimal expansion:
\[0 .\overline {231 }\]
If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.
If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.
Find the geometric means of the following pairs of number:
2 and 8
In a G.P. of even number of terms, the sum of all terms is five times the sum of the odd terms. The common ratio of the G.P. is
The two geometric means between the numbers 1 and 64 are
Check whether the following sequence is G.P. If so, write tn.
2, 6, 18, 54, …
Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.
Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1
The number of bacteria in a culture doubles every hour. If there were 50 bacteria originally in the culture, how many bacteria will be there at the end of 5thhour?
The numbers x − 6, 2x and x2 are in G.P. Find x
For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r
The value of a house appreciates 5% per year. How much is the house worth after 6 years if its current worth is ₹ 15 Lac. [Given: (1.05)5 = 1.28, (1.05)6 = 1.34]
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/2, 1/4, 1/8, 1/16,...`
Find : `sum_("r" = 1)^oo 4(0.5)^"r"`
Select the correct answer from the given alternative.
The common ratio for the G.P. 0.12, 0.24, 0.48, is –
Answer the following:
If for a G.P. t3 = `1/3`, t6 = `1/81` find r
Answer the following:
If p, q, r, s are in G.P., show that (pn + qn), (qn + rn) , (rn + sn) are also in G.P.
If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.
For an increasing G.P. a1, a2 , a3 ........., an, if a6 = 4a4, a9 – a7 = 192, then the value of `sum_(i = 1)^∞ 1/a_i` is ______.
If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.