हिंदी

If A, B, C Are in A.P. and A, B, D Are in G.P., Then Prove that A, a − B, D − C Are in G.P. - Mathematics

Advertisements
Advertisements

प्रश्न

If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.

उत्तर

\[\text { a, b and c are in A . P } . \]

\[ \therefore 2b = a + c . . . . . . . (i)\]

\[\text { Also, a, b and d are in G . P } . \]

\[ \therefore b^2 = ad . . . . . . . (ii)\]

\[\text { Now, } \left( a - b \right)^2 \]

\[ = a^2 - 2ab + b^2 \]

\[ = a^2 - a\left( a + c \right) + ad \left[ \text { Using (i) and  (ii) } \right]\]

\[ = ad - ac\]

\[ = a\left( d - c \right)\]

\[ \Rightarrow \left( a - b \right)^2 = a\left( d - c \right)\]

\[\text { Therefore, } a, \left( a - b \right) \text { and } \left( d - c \right) \text { are in G . P }.\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Geometric Progression - Exercise 20.5 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 20 Geometric Progression
Exercise 20.5 | Q 15 | पृष्ठ ४६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Which term of the following sequence:

`1/3, 1/9, 1/27`, ...., is `1/19683`?


If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`


The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.


Which term of the G.P. :

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]


The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.


Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.


The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.


Find the sum of the following geometric series:

\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text {  to n terms }\]


Find the sum of the following series:

0.6 + 0.66 + 0.666 + .... to n terms


How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?


The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.


The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.


Find the sum of the following serie to infinity:

`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`


Find the sum of the following serie to infinity:

\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]


Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.


If a, b, c are in G.P., prove that log a, log b, log c are in A.P.


Three numbers are in A.P. and their sum is 15. If 1, 3, 9 be added to them respectively, they form a G.P. Find the numbers.


The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.


If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)


If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.


If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.


If logxa, ax/2 and logb x are in G.P., then write the value of x.


If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is 


If pq be two A.M.'s and G be one G.M. between two numbers, then G2


If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]


For the G.P. if r = `1/3`, a = 9 find t7


Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1


The numbers 3, x, and x + 6 form are in G.P. Find nth term


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.


For a G.P. If t3 = 20 , t6 = 160 , find S7


If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.


The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.


Select the correct answer from the given alternative.

If common ratio of the G.P is 5, 5th term is 1875, the first term is -


Select the correct answer from the given alternative.

Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –


Answer the following:

If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q


Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.


If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`


If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×