हिंदी

Prove That: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.

उत्तर

\[\text { LHS } = 2^\frac{1}{4} . 4^\frac{2}{8} . 8^\frac{3}{16} . {16}^\frac{4}{32} . . . \infty \]

\[ = 2^\left( \frac{1}{4} + \frac{2}{8} + \frac{3}{16}\frac{3}{16}\frac{4}{32} . \infty \right) \]

\[ = 2^\left( \frac{1}{2^2} + \frac{2}{2^3} + \frac{3}{2^4} + \frac{4}{2^5} + . . . \infty \right) \]

\[ = 2^\frac{1}{2^2}\left\{ 1 + \frac{2}{2} + \frac{3}{2^2} + \frac{4}{2^3} . . . \infty \right\} \]

\[ = 2^\frac{1}{2^2}\left\{ \frac{1}{1 - \frac{1}{2}} + \frac{1 . \frac{1}{2}}{\left( 1 - \frac{1}{2} \right)^2} \right\} \]

\[ = 2^\frac{1}{2^2}\left\{ 2 + 2 \right\} \]

\[ = 2^1 \]

\[ = 2 = \text { RHS }\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Geometric Progression - Exercise 20.4 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 20 Geometric Progression
Exercise 20.4 | Q 3 | पृष्ठ ४०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`


The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.


Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`


If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.


If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .


Find the value of n so that  `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]


Which term of the G.P. :

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]


Which term of the G.P. :

\[2, 2\sqrt{2}, 4, . . .\text {  is }128 ?\]


Find three numbers in G.P. whose sum is 65 and whose product is 3375.


Find the sum of the following geometric series:

(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;


Find the sum of the following geometric series:

`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;


Find the sum of the following geometric series:

\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text {  to n terms }\]


A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.


Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.


Find the sum of the terms of an infinite decreasing G.P. in which all the terms are positive, the first term is 4, and the difference between the third and fifth term is equal to 32/81.


If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.


If a, b, c are in G.P., prove that:

\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]


If a, b, c, d are in G.P., prove that:

(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.


If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.


Find the geometric means of the following pairs of number:

a3b and ab3


If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.

 

 

 


If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to


If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is


If A be one A.M. and pq be two G.M.'s between two numbers, then 2 A is equal to 


Check whether the following sequence is G.P. If so, write tn.

1, –5, 25, –125 …


For the G.P. if r = − 3 and t6 = 1701, find a.


Which term of the G.P. 5, 25, 125, 625, … is 510?


If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.


The number of bacteria in a culture doubles every hour. If there were 50 bacteria originally in the culture, how many bacteria will be there at the end of 5thhour?


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.


Find the sum to n terms of the sequence.

0.5, 0.05, 0.005, ...


Find : `sum_("n" = 1)^oo 0.4^"n"`


Find GM of two positive numbers whose A.M. and H.M. are 75 and 48


Select the correct answer from the given alternative.

The common ratio for the G.P. 0.12, 0.24, 0.48, is –


Answer the following:

If for a G.P. t3 = `1/3`, t6 = `1/81` find r


If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.


In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.


The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×