Advertisements
Advertisements
प्रश्न
Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`
उत्तर
The product of the corresponding terms of the sequence 2, 4, 8, 16, 32 and 128, 32, 8, 2, `1/2` is 2 × 128, 4 × 32, 8 × 8, 16 × 2, 32 × `1/ 2` or 256, 128, 64, 32, 16
First term of the geometric progression, a = 256
r = `128/256 = 1/2, "n" = 5`
∴ Sum = `(256[1 - (1/2)^5])/(1 - 1/2)`
= `256 xx 2 (1 - 1/32)`
= `256 xx 2 xx 31/32`
= 16 × 31
= 496
APPEARS IN
संबंधित प्रश्न
Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…
The sum of first three terms of a G.P. is `39/10` and their product is 1. Find the common ratio and the terms.
Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio
Insert two numbers between 3 and 81 so that the resulting sequence is G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
−2/3, −6, −54, ...
Find the 4th term from the end of the G.P.
Which term of the G.P. :
\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]
If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.
The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.
If \[\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}\] (x ≠ 0), then show that a, b, c and d are in G.P.
The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.
Find the sum of the following geometric progression:
1, 3, 9, 27, ... to 8 terms;
Find the sum of the following serie:
5 + 55 + 555 + ... to n terms;
If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.
If a, b, c are in G.P., prove that:
a (b2 + c2) = c (a2 + b2)
If a, b, c, d are in G.P., prove that:
(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.
Find the geometric means of the following pairs of number:
2 and 8
If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to
The value of 91/3 . 91/9 . 91/27 ... upto inf, is
If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is
A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.
The numbers x − 6, 2x and x2 are in G.P. Find x
For a G.P. if S5 = 1023 , r = 4, Find a
For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r
Find the sum to n terms of the sequence.
0.5, 0.05, 0.005, ...
Find: `sum_("r" = 1)^10 5 xx 3^"r"`
Express the following recurring decimal as a rational number:
`2.3bar(5)`
If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.
Select the correct answer from the given alternative.
Which term of the geometric progression 1, 2, 4, 8, ... is 2048
Answer the following:
Find three numbers in G.P. such that their sum is 35 and their product is 1000
Answer the following:
For a G.P. if t2 = 7, t4 = 1575 find a
Answer the following:
If for a G.P. t3 = `1/3`, t6 = `1/81` find r
Answer the following:
Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.
Answer the following:
Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.
For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.
The sum or difference of two G.P.s, is again a G.P.
Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.
The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.