हिंदी

Find the sum of the products of the corresponding terms of the sequences and2,4,8,16,32and128,32,8,2,12 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`

योग

उत्तर

The product of the corresponding terms of the sequence 2, 4, 8, 16, 32 and 128, 32, 8, 2, `1/2` is 2 × 128, 4 × 32, 8 × 8, 16 × 2, 32 × `1/ 2` or 256, 128, 64, 32, 16

First term of the geometric progression, a = 256

r = `128/256 = 1/2, "n" = 5`

∴ Sum = `(256[1 - (1/2)^5])/(1 - 1/2)`

= `256 xx 2 (1 - 1/32)`

= `256 xx 2 xx 31/32`

= 16 × 31

= 496

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Sequences and Series - Exercise 9.3 [पृष्ठ १९३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 9 Sequences and Series
Exercise 9.3 | Q 19 | पृष्ठ १९३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…


The sum of first three terms of a G.P. is  `39/10` and their product is 1. Find the common ratio and the terms.


Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio


Insert two numbers between 3 and 81 so that the resulting sequence is G.P.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

−2/3, −6, −54, ...


Find the 4th term from the end of the G.P.

\[\frac{2}{27}, \frac{2}{9}, \frac{2}{3}, . . . , 162\]

Which term of the G.P. :

\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]


If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.


The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.


If \[\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}\] (x ≠ 0), then show that abc and d are in G.P.


The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.


Find the sum of the following geometric progression:

1, 3, 9, 27, ... to 8 terms;


Find the sum of the following serie:

5 + 55 + 555 + ... to n terms;


If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.


If a, b, c are in G.P., prove that:

a (b2 + c2) = c (a2 + b2)


If a, b, c, d are in G.P., prove that:

(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.


Find the geometric means of the following pairs of number:

2 and 8


If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to


The value of 91/3 . 91/9 . 91/27 ... upto inf, is 


If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is 


A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.


The numbers x − 6, 2x and x2 are in G.P. Find x


For a G.P. if S5 = 1023 , r = 4, Find a


For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r


Find the sum to n terms of the sequence.

0.5, 0.05, 0.005, ...


Find: `sum_("r" = 1)^10 5 xx 3^"r"`


Express the following recurring decimal as a rational number:

`2.3bar(5)`


If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.


Select the correct answer from the given alternative.

Which term of the geometric progression 1, 2, 4, 8, ... is 2048


Answer the following:

Find three numbers in G.P. such that their sum is 35 and their product is 1000


Answer the following:

For a G.P. if t2 = 7, t4 = 1575 find a


Answer the following:

If for a G.P. t3 = `1/3`, t6 = `1/81` find r


Answer the following:

Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.


Answer the following:

Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.


For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.


The sum or difference of two G.P.s, is again a G.P.


Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.


The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×