Advertisements
Advertisements
प्रश्न
The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.
उत्तर
\[\text { Let r be the common ratio of the given G . P } . \]
\[\text { Then }, a_4 = \left( a_2 \right)^2 \left[ \text { Given } \right]\]
\[\text { Now, }a r^3 = a^2 r^2 \]
\[ \Rightarrow r = a \]
\[ \Rightarrow r = - 3 \left[ \text { Putting } a = - 3 \right] \]
\[ \therefore a_7 = a r^6 \]
\[ \Rightarrow a_7 = \left( - 3 \right) \left( - 3 \right)^6 \left[ \text { Putting a = - 3 and }r = - 3 \right] \]
\[ \Rightarrow a_7 = \left( - 3 \right)\left( - 729 \right) \]
\[ \Rightarrow a_7 = - 2187\]
\[\text { Thus, the } 7^{th} \text { term of the G . P . is } - 2187 .\]
APPEARS IN
संबंधित प्रश्न
Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.
Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).
Given a G.P. with a = 729 and 7th term 64, determine S7.
Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.
If f is a function satisfying f (x +y) = f(x) f(y) for all x, y ∈ N such that f(1) = 3 and `sum_(x = 1)^n` f(x) = 120, find the value of n.
The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.
Find :
the 12th term of the G.P.
\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]
Find :
the 10th term of the G.P.
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]
Which term of the G.P. :
\[\sqrt{3}, 3, 3\sqrt{3}, . . . \text { is } 729 ?\]
The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.
If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.
The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.
Find the sum of the following geometric progression:
2, 6, 18, ... to 7 terms;
Find the sum of the following geometric progression:
(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;
Find the sum of the following geometric series:
0.15 + 0.015 + 0.0015 + ... to 8 terms;
Evaluate the following:
\[\sum^{10}_{n = 2} 4^n\]
How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.
Let an be the nth term of the G.P. of positive numbers.
Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.
The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.
The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.
If a, b, c are in G.P., prove that:
\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]
If a, b, c, d are in G.P., prove that:
\[\frac{1}{a^2 + b^2}, \frac{1}{b^2 - c^2}, \frac{1}{c^2 + d^2} \text { are in G . P } .\]
If a, b, c are in G.P., then prove that:
If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.
Insert 6 geometric means between 27 and \[\frac{1}{81}\] .
If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.
If the first term of a G.P. a1, a2, a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is
Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals
Check whether the following sequence is G.P. If so, write tn.
`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...
The numbers x − 6, 2x and x2 are in G.P. Find 1st term
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.
If one invests Rs. 10,000 in a bank at a rate of interest 8% per annum, how long does it take to double the money by compound interest? [(1.08)5 = 1.47]
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/2, 1/4, 1/8, 1/16,...`
If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.
Select the correct answer from the given alternative.
Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)
Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.
Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.