हिंदी

The Seventh Term of a G.P. is 8 Times the Fourth Term and 5th Term is 48. Find the G.P. - Mathematics

Advertisements
Advertisements

प्रश्न

The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.

उत्तर

\[\text { Let a be the first term and r be the common ratio  }. \]

\[ \therefore a_7 = 8 a_4 \text { and } a_5 = 48\]

\[ \Rightarrow a r^6 = 8a r^3 \text { and } a r^4 = 48\]

\[ \Rightarrow r^3 = 8 \]

\[ \Rightarrow r^3 = 2^3 \]

\[ \Rightarrow r = 2\]

\[\text { Putting r } = 2 \text { in a  }r^4 = 48\]

\[a \left( 2 \right)^4 = 48 \]

\[ \Rightarrow a = 3\]

\[\text { Thus, the given G . P . is } 3, 6, 12, . . . \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Geometric Progression - Exercise 20.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 20 Geometric Progression
Exercise 20.1 | Q 10 | पृष्ठ १०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

The sum of first three terms of a G.P. is  `39/10` and their product is 1. Find the common ratio and the terms.


Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio


Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.


The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

4, −2, 1, −1/2, ...


Show that the sequence <an>, defined by an = \[\frac{2}{3^n}\], n ϵ N is a G.P.


Find the 4th term from the end of the G.P.

\[\frac{2}{27}, \frac{2}{9}, \frac{2}{3}, . . . , 162\]

If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.


Find the sum of the following geometric progression:

1, 3, 9, 27, ... to 8 terms;


Find the sum of the following geometric series:

\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]


Evaluate the following:

\[\sum^{11}_{n = 1} (2 + 3^n )\]


Find the sum of the following series:

9 + 99 + 999 + ... to n terms;


The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.


Find the sum of the following serie to infinity:

\[1 - \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^3} + \frac{1}{3^4} + . . . \infty\]


Find the sum of the following serie to infinity:

8 +  \[4\sqrt{2}\] + 4 + ... ∞


Find the sum of the terms of an infinite decreasing G.P. in which all the terms are positive, the first term is 4, and the difference between the third and fifth term is equal to 32/81.


Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.


The sum of three numbers a, b, c in A.P. is 18. If a and b are each increased by 4 and c is increased by 36, the new numbers form a G.P. Find a, b, c.


If a, b, c are in G.P., prove that the following is also in G.P.:

a2, b2, c2


The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .


If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is 


The two geometric means between the numbers 1 and 64 are 


Check whether the following sequence is G.P. If so, write tn.

`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...


For the G.P. if a = `2/3`, t6 = 162, find r.


The numbers 3, x, and x + 6 form are in G.P. Find nth term


For the following G.P.s, find Sn

0.7, 0.07, 0.007, .....


For a G.P. If t3 = 20 , t6 = 160 , find S7


For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.


Express the following recurring decimal as a rational number:

`51.0bar(2)`


If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term


Select the correct answer from the given alternative.

The common ratio for the G.P. 0.12, 0.24, 0.48, is –


Select the correct answer from the given alternative.

The tenth term of the geometric sequence `1/4, (-1)/2, 1, -2,` ... is –


Select the correct answer from the given alternative.

Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –


Answer the following:

In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term


Answer the following:

Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.


If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×