Advertisements
Advertisements
प्रश्न
Find the sum of the terms of an infinite decreasing G.P. in which all the terms are positive, the first term is 4, and the difference between the third and fifth term is equal to 32/81.
उत्तर
\[\text{ Let r be the common ratio of the given G . P } . \]
\[ \therefore a = 4\]
\[\text { Sum of the geometric ifinite series: } \]
\[ S_\infty = 4 + 4r + 4 r^2 + . . . \infty \]
\[\text { Now, } S_\infty = \frac{4}{1 - r} . . . . . . . \left( i \right)\]
\[\text { The difference between the third and fifth term is } \frac{32}{81} . \]
\[ a_3 - a_5 = \frac{32}{81}\]
\[ \Rightarrow 4 r^2 - 4 r^4 = \frac{32}{81}\]
\[ \Rightarrow 4\left( r^2 - r^4 \right) = \frac{32}{81}\]
\[ \Rightarrow 81 r^4 - 81 r^2 + 8 = 0 . . . . . . . \left( ii \right)\]
\[\text { Now, let } r^2 = y\]
\[\text { Let us put this in } \left( ii \right) . \]
\[ \therefore 81 r^4 - 81 r^2 + 8 = 0\]
\[ \Rightarrow 81 y^2 - 81y + 8 = 0\]
\[ \Rightarrow 81 y^2 - 72y - 9y + 8 = 0\]
\[ \Rightarrow 9y\left( 9y - 1 \right) - 8\left( 9y - 1 \right) = 0\]
\[ \Rightarrow \left( 9y - 8 \right)\left( 9y - 1 \right)\]
\[ \Rightarrow y = \frac{1}{9}, \frac{8}{9}\]
\[\text { Putting y } = r^2 ,\text { we get } r = \frac{1}{3} \text { and } \frac{2\sqrt{2}}{3}\]
\[\text { Substituting r } = \frac{1}{3} \text { and }\frac{2\sqrt{2}}{3} \text { in } \left( i \right): \]
\[ S_\infty = \frac{4}{1 - \frac{1}{3}} = \frac{12}{2} = 6\]
\[\text { Similarly }, S_\infty = \frac{4}{1 - \frac{2\sqrt{2}}{3}} = \frac{12}{3 - 2\sqrt{2}}\]
\[ \therefore S_\infty = 6, \frac{12}{3 - 2\sqrt{2}}\]
APPEARS IN
संबंधित प्रश्न
Which term of the following sequence:
`2, 2sqrt2, 4,.... is 128`
The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.
Given a G.P. with a = 729 and 7th term 64, determine S7.
If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .
if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.
If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.
If a, b, c are in A.P,; b, c, d are in G.P and ` 1/c, 1/d,1/e` are in A.P. prove that a, c, e are in G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]
Which term of the G.P. :
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]
If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.
Find three numbers in G.P. whose sum is 38 and their product is 1728.
The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.
Find the sum of the following geometric progression:
(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;
Find the sum of the following geometric series:
\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]
Find the sum of the following geometric series:
x3, x5, x7, ... to n terms
A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.
If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.
Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.
Find the sum of the following series to infinity:
10 − 9 + 8.1 − 7.29 + ... ∞
Find the sum of the following serie to infinity:
\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]
Find the rational number whose decimal expansion is \[0 . 423\].
Find the rational numbers having the following decimal expansion:
\[3 . 5\overline 2\]
If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively
\[\frac{2S S_1}{S^2 + S_1}\text { and } \frac{S^2 - S_1}{S^2 + S_1}\]
If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.
If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.
Insert 6 geometric means between 27 and \[\frac{1}{81}\] .
If logxa, ax/2 and logb x are in G.P., then write the value of x.
If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.
If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.
Check whether the following sequence is G.P. If so, write tn.
`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...
For the G.P. if a = `2/3`, t6 = 162, find r.
The numbers 3, x, and x + 6 form are in G.P. Find nth term
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares
Answer the following:
For a G.P. a = `4/3` and t7 = `243/1024`, find the value of r
Answer the following:
For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.
Answer the following:
Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.
Answer the following:
If p, q, r, s are in G.P., show that (p2 + q2 + r2) (q2 + r2 + s2) = (pq + qr + rs)2
In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.