Advertisements
Advertisements
प्रश्न
Answer the following:
For a G.P. a = `4/3` and t7 = `243/1024`, find the value of r
उत्तर
Given, a = `4/3`, t7 = `243/1024`
tn = arn–1
∴ t7 = ar6
∴ `243/1024` = ar6
∴ `243/1024 = 4/3"r"^6`
∴ r6 = `3^6/4^6`
∴ r = `3/4`
APPEARS IN
संबंधित प्रश्न
The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.
Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.
Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.
If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .
Insert two numbers between 3 and 81 so that the resulting sequence is G.P.
Find the 4th term from the end of the G.P.
\[\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \frac{1}{54}, . . . , \frac{1}{4374}\]
Find three numbers in G.P. whose sum is 38 and their product is 1728.
Find the sum of the following geometric series:
\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]
Find the sum of the following geometric series:
\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text { to n terms }\]
Evaluate the following:
\[\sum^{10}_{n = 2} 4^n\]
Find the sum of the following series:
7 + 77 + 777 + ... to n terms;
The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.
Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.
Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.
If a, b, c are in G.P., prove that:
(a + 2b + 2c) (a − 2b + 2c) = a2 + 4c2.
If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.
Find the geometric means of the following pairs of number:
−8 and −2
If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is
The value of 91/3 . 91/9 . 91/27 ... upto inf, is
The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is
If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is
The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to
Check whether the following sequence is G.P. If so, write tn.
3, 4, 5, 6, …
For the G.P. if r = `1/3`, a = 9 find t7
For what values of x, the terms `4/3`, x, `4/27` are in G.P.?
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 10 years.
For the following G.P.s, find Sn.
p, q, `"q"^2/"p", "q"^3/"p"^2,` ...
For a G.P. If t4 = 16, t9 = 512, find S10
Find: `sum_("r" = 1)^10(3 xx 2^"r")`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`-3, 1, (-1)/3, 1/9, ...`
If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term
Select the correct answer from the given alternative.
If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?
Answer the following:
Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.
If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.
The third term of a G.P. is 4, the product of the first five terms is ______.
If the sum of an infinite GP a, ar, ar2, ar3, ...... . is 15 and the sum of the squares of its each term is 150, then the sum of ar2, ar4, ar6, .... is ______.
Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______.