हिंदी

For the following G.P.s, find Sn. p, q, qpqpq2p,q3p2, ... - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

For the following G.P.s, find Sn.

p, q, `"q"^2/"p", "q"^3/"p"^2,` ...

योग

उत्तर

Here, a = p, r = `"q"/"p"`

If `"q"/"p"` < 1, then

∴ Sn = `("a"(1 - "r"^"n"))/(1 - "r")`

= `("p"[1 - ("q"/"p")^"n"])/(1 - ("q"/"p")`

= `"p"^2/("p" - "q") [1 - ("q"/"p")^"n"]`

If `"q"/"p" > 1,` then

Sn = `("a"("r"^"n" - 1))/("r" - 1)`

= `("p"[("q"/"p")^"n" - 1])/(("q"/"p") - 1)`

= `"p"^2/("q" - "p") [("q"/"p")^"n" - 1]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Sequences and Series - Exercise 2.2 [पृष्ठ ३१]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 2 Sequences and Series
Exercise 2.2 | Q 1. (ii) | पृष्ठ ३१

संबंधित प्रश्न

Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.


The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.


Show that the sequence <an>, defined by an = \[\frac{2}{3^n}\], n ϵ N is a G.P.


Find :

the 8th term of the G.P. 0.3, 0.06, 0.012, ...


Find : 

nth term of the G.P.

\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]


Find :

the 10th term of the G.P.

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]


Which term of the progression 18, −12, 8, ... is \[\frac{512}{729}\] ?

 

Find three numbers in G.P. whose sum is 65 and whose product is 3375.


The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.


Find the sum of the following geometric progression:

2, 6, 18, ... to 7 terms;


Find the sum of the following geometric progression:

1, 3, 9, 27, ... to 8 terms;


Find the sum of the following geometric progression:

(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;


Find the sum of the following geometric series:

(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;


Find the sum of the following geometric series:

\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]


Find the sum of the following geometric series:

x3, x5, x7, ... to n terms


Evaluate the following:

\[\sum^{11}_{n = 1} (2 + 3^n )\]


A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.


Find the rational numbers having the following decimal expansion: 

\[0 . \overline3\]


If a, b, c are in G.P., prove that log a, log b, log c are in A.P.


If a, b, c, d are in G.P., prove that:

\[\frac{1}{a^2 + b^2}, \frac{1}{b^2 - c^2}, \frac{1}{c^2 + d^2} \text { are in G . P } .\]


If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.


Find the geometric means of the following pairs of number:

2 and 8


The fractional value of 2.357 is 


If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is


If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is 


For the G.P. if a = `7/243`, r = 3 find t6.


The numbers 3, x, and x + 6 form are in G.P. Find x


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 3 years.


The numbers x − 6, 2x and x2 are in G.P. Find x


For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r


Express the following recurring decimal as a rational number:

`2.bar(4)`


Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"` 


Find : `sum_("n" = 1)^oo 0.4^"n"`


Find GM of two positive numbers whose A.M. and H.M. are 75 and 48


Select the correct answer from the given alternative.

If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?


Select the correct answer from the given alternative.

Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)


At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.


In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.


If the sum of an infinite GP a, ar, ar2, ar3, ...... . is 15 and the sum of the squares of its each term is 150, then the sum of ar2, ar4, ar6, .... is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×