Advertisements
Advertisements
प्रश्न
For the following G.P.s, find Sn.
p, q, `"q"^2/"p", "q"^3/"p"^2,` ...
उत्तर
Here, a = p, r = `"q"/"p"`
If `"q"/"p"` < 1, then
∴ Sn = `("a"(1 - "r"^"n"))/(1 - "r")`
= `("p"[1 - ("q"/"p")^"n"])/(1 - ("q"/"p")`
= `"p"^2/("p" - "q") [1 - ("q"/"p")^"n"]`
If `"q"/"p" > 1,` then
Sn = `("a"("r"^"n" - 1))/("r" - 1)`
= `("p"[("q"/"p")^"n" - 1])/(("q"/"p") - 1)`
= `"p"^2/("q" - "p") [("q"/"p")^"n" - 1]`
APPEARS IN
संबंधित प्रश्न
Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…
If a, b, c are in A.P,; b, c, d are in G.P and ` 1/c, 1/d,1/e` are in A.P. prove that a, c, e are in G.P.
Find:
the ninth term of the G.P. 1, 4, 16, 64, ...
The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.
If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].
The product of three numbers in G.P. is 125 and the sum of their products taken in pairs is \[87\frac{1}{2}\] . Find them.
Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.
Find the sum of the following geometric series:
1, −a, a2, −a3, ....to n terms (a ≠ 1)
Evaluate the following:
\[\sum^{10}_{n = 2} 4^n\]
The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.
A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.
Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.
Find the rational number whose decimal expansion is \[0 . 423\].
The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.
If a, b, c are in G.P., prove that:
\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]
If a, b, c, d are in G.P., prove that:
(a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2
If a, b, c, d are in G.P., prove that:
(b + c) (b + d) = (c + a) (c + d)
If a, b, c are in G.P., prove that the following is also in G.P.:
a2, b2, c2
If a, b, c are in G.P., prove that the following is also in G.P.:
a3, b3, c3
If a, b, c are in G.P., then prove that:
Insert 5 geometric means between 16 and \[\frac{1}{4}\] .
Find the geometric means of the following pairs of number:
2 and 8
Find the geometric means of the following pairs of number:
a3b and ab3
Write the product of n geometric means between two numbers a and b.
The fractional value of 2.357 is
The value of 91/3 . 91/9 . 91/27 ... upto inf, is
Check whether the following sequence is G.P. If so, write tn.
1, –5, 25, –125 …
Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1
The numbers 3, x, and x + 6 form are in G.P. Find x
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.
Express the following recurring decimal as a rational number:
`2.bar(4)`
A ball is dropped from a height of 10m. It bounces to a height of 6m, then 3.6m and so on. Find the total distance travelled by the ball
Select the correct answer from the given alternative.
If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?
Select the correct answer from the given alternative.
The sum of 3 terms of a G.P. is `21/4` and their product is 1 then the common ratio is –
Answer the following:
If p, q, r, s are in G.P., show that (p2 + q2 + r2) (q2 + r2 + s2) = (pq + qr + rs)2
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.
The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is 216 cm3 and the total surface area is 252cm2. The length of the longest edge is ______.
If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.