मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Answer the following: If p, q, r, s are in G.P., show that (p2 + q2 + r2) (q2 + r2 + s2) = (pq + qr + rs)2 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

If p, q, r, s are in G.P., show that (p2 + q2 + r2) (q2 + r2 + s2) = (pq + qr + rs)2   

बेरीज

उत्तर

Let R be the common ratio of the G.P.

Then q = pR, r = pR2, s = pR3

∴ (p2 + q2 + r2)(q2 + r2 + S2)

= (p2 + p2R2 + p2R4)(p2R2 + p2R4 + p2R6)

= p2(1 + R2 + R4)·p2R2(1 + R2 + R4)

= p4R2(1 + R2 + R4)2    ...(1)

and (pq +qr + rs)2 = [p(pR) + (pR)(pR2) + (pR2)(pR3)]2

= (p2R + p2R3 + p2R5)2

= [p2R (1 + R2 + R4)]2

= p4R2 (1 + R2 + R4)2   ...(2)

From (1) and (2), we get,

(p2 + q2 + r2)(q2 + r2 + s2) = (pq + qr + rs)2

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Sequences and Series - Miscellaneous Exercise 2.2 [पृष्ठ ४२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 2 Sequences and Series
Miscellaneous Exercise 2.2 | Q II. (30) | पृष्ठ ४२

संबंधित प्रश्‍न

The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that q2 = ps.


Given a G.P. with a = 729 and 7th term 64, determine S7.


Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio


If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .


Insert two numbers between 3 and 81 so that the resulting sequence is G.P.


The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.


The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.


In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.


Find the sum of the following series:

7 + 77 + 777 + ... to n terms;


How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\]  ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?


The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.


Find the rational numbers having the following decimal expansion: 

\[0 . \overline3\]


Find the rational numbers having the following decimal expansion: 

\[0 . 6\overline8\]


If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.


If a, b, c, d are in G.P., prove that:

\[\frac{1}{a^2 + b^2}, \frac{1}{b^2 - c^2}, \frac{1}{c^2 + d^2} \text { are in G . P } .\]


If a, b, c, d are in G.P., prove that:

(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.


Insert 6 geometric means between 27 and  \[\frac{1}{81}\] .


Find the geometric means of the following pairs of number:

a3b and ab3


If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.

 

 

 


The fractional value of 2.357 is 


The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is 


If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is 


For the G.P. if a = `7/243`, r = 3 find t6.


A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?


The numbers x − 6, 2x and x2 are in G.P. Find x


For the following G.P.s, find Sn.

p, q, `"q"^2/"p", "q"^3/"p"^2,` ...


For the following G.P.s, find Sn

0.7, 0.07, 0.007, .....


For a G.P. if S5 = 1023 , r = 4, Find a


For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r


If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.


Express the following recurring decimal as a rational number:

`51.0bar(2)`


Find : `sum_("r" = 1)^oo (-1/3)^"r"`


Select the correct answer from the given alternative.

Which term of the geometric progression 1, 2, 4, 8, ... is 2048


Answer the following:

For a G.P. a = `4/3` and t7 = `243/1024`, find the value of r


Answer the following:

Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`


In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.


If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`


If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×