Advertisements
Advertisements
प्रश्न
For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r
उत्तर
Let a be the first term and r be the common ratio of G.P.
Then S3 = 125 and S6 =125 + 27 = 152
∴ `"S"_6/"S"_3= 152/125`
∴ `([("a"("r"^6 - 1))/("r" - 1)])/([("a"("r"^3 - 1))/("r" - 1)]) = 152/125`
∴ `("r"^6 - 1)/("r"^3 - 1) = 152/125`
∴ `(("r"^3 - 1)("r"^3 + 1))/("r"^3 - 1) = 152/125`
∴ r3 + 1 = `152/125`
∴ r3 = `152/125 - 1 = 27/125 = (3/5)^3`
∴ r = `3/5`
APPEARS IN
संबंधित प्रश्न
Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`
If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.
The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.
Which term of the G.P. :
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]
Which term of the G.P. :
\[2, 2\sqrt{2}, 4, . . .\text { is }128 ?\]
If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.
The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.
Find the sum of the following geometric series:
\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8 terms };\]
Find the sum of the following geometric series:
1, −a, a2, −a3, ....to n terms (a ≠ 1)
Evaluate the following:
\[\sum^{11}_{n = 1} (2 + 3^n )\]
Find the sum of the following series:
0.6 + 0.66 + 0.666 + .... to n terms
The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].
Find the rational numbers having the following decimal expansion:
\[0 .\overline {231 }\]
Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.
If a, b, c are in G.P., prove that:
\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]
If a, b, c are in G.P., prove that:
(a + 2b + 2c) (a − 2b + 2c) = a2 + 4c2.
If a, b, c, d are in G.P., prove that:
(b + c) (b + d) = (c + a) (c + d)
If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.
If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.
If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.
If the sum of an infinite decreasing G.P. is 3 and the sum of the squares of its term is \[\frac{9}{2}\], then write its first term and common difference.
The fractional value of 2.357 is
If a, b, c are in G.P. and x, y are AM's between a, b and b,c respectively, then
Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals
The two geometric means between the numbers 1 and 64 are
The number of bacteria in a culture doubles every hour. If there were 50 bacteria originally in the culture, how many bacteria will be there at the end of 5thhour?
A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?
The numbers 3, x, and x + 6 form are in G.P. Find 20th term.
The numbers x − 6, 2x and x2 are in G.P. Find nth term
Find: `sum_("r" = 1)^10 5 xx 3^"r"`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`-3, 1, (-1)/3, 1/9, ...`
Express the following recurring decimal as a rational number:
`51.0bar(2)`
Find : `sum_("r" = 1)^oo 4(0.5)^"r"`
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares
A ball is dropped from a height of 10m. It bounces to a height of 6m, then 3.6m and so on. Find the total distance travelled by the ball
Select the correct answer from the given alternative.
If common ratio of the G.P is 5, 5th term is 1875, the first term is -
Answer the following:
For a G.P. if t2 = 7, t4 = 1575 find a
Answer the following:
If for a G.P. first term is (27)2 and seventh term is (8)2, find S8
At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.