मराठी

Find the Rational Numbers Having the Following Decimal Expansion: 0 . ¯¯¯¯¯¯¯¯ 231 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the rational numbers having the following decimal expansion: 

\[0 .\overline {231 }\]

उत्तर

\[0 . \overline {231 }\]

\[\text { Let } S = 0 . \overline {231 }\]

\[ \Rightarrow S = 0 . 231 + 0 . 000231 + 0 . 000000231 + . . . \infty \]

\[ \Rightarrow S = 0 . 231\left( 1 + {10}^{- 3} + {10}^{- 6} + . . . \infty \right)\]

\[\text { It is a G . P } . \]

\[ \therefore S = 0 . 231\left( \frac{1}{1 - {10}^{- 3}} \right)\]

\[ \Rightarrow S = \frac{231}{999}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Geometric Progression - Exercise 20.4 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 20 Geometric Progression
Exercise 20.4 | Q 8.2 | पृष्ठ ४०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Which term of the following sequence: 

`2, 2sqrt2, 4,.... is 128`


Which term of the following sequence:

`sqrt3, 3, 3sqrt3`, .... is 729?


For what values of x, the numbers  `-2/7, x, -7/2` are in G.P?


Given a G.P. with a = 729 and 7th term 64, determine S7.


Find the sum to n terms of the sequence, 8, 88, 888, 8888… .


Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.


Show that the sequence <an>, defined by an = \[\frac{2}{3^n}\], n ϵ N is a G.P.


Which term of the progression 0.004, 0.02, 0.1, ... is 12.5?


The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.


The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.


Find the sum of the following geometric progression:

1, 3, 9, 27, ... to 8 terms;


Find the sum of the following serie:

5 + 55 + 555 + ... to n terms;


How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?


How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\]  ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?


Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.


Find the sum of the following serie to infinity:

`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`


Find the sum of the following serie to infinity:

\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]


Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.


Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.


Three numbers are in A.P. and their sum is 15. If 1, 3, 9 be added to them respectively, they form a G.P. Find the numbers.


If a, b, c are in G.P., prove that:

\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]


If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.


The two geometric means between the numbers 1 and 64 are 


Check whether the following sequence is G.P. If so, write tn.

1, –5, 25, –125 …


For the G.P. if r = `1/3`, a = 9 find t7


For a G.P. if a = 2, r = 3, Sn = 242 find n


Express the following recurring decimal as a rational number:

`51.0bar(2)`


Select the correct answer from the given alternative.

If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?


Answer the following:

In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term


Answer the following:

Find the sum of the first 5 terms of the G.P. whose first term is 1 and common ratio is `2/3`


Answer the following:

If for a G.P. t3 = `1/3`, t6 = `1/81` find r


Answer the following:

Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`


At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.


If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c


If 0 < x, y, a, b < 1, then the sum of the infinite terms of the series `sqrt(x)(sqrt(a) + sqrt(x)) + sqrt(x)(sqrt(ab) + sqrt(xy)) + sqrt(x)(bsqrt(a) + ysqrt(x)) + ...` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×