मराठी

How Many Terms of the G.P. 3, 3/2, 3/4, ... Be Taken Together to Make 3069 512 ? - Mathematics

Advertisements
Advertisements

प्रश्न

How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?

उत्तर

Here, a = 3
Common ratio, 

\[r = \frac{1}{2}\]

Sn = \[\frac{3069}{512}\]

\[\therefore S_n = 3\left\{ \frac{1 - \left( \frac{1}{2} \right)^n}{1 - \frac{1}{2}} \right\}\]

\[ \Rightarrow \frac{3069}{512} = 3\left\{ \frac{1 - \frac{1}{2^n}}{\frac{1}{2}} \right\} \]

\[ \Rightarrow \frac{3069}{512} = 6 \left\{ 1 - \frac{1}{2^n} \right\}\]

\[ \Rightarrow \frac{3069}{3072} = 1 - \frac{1}{2^n} \]

\[ \Rightarrow \frac{1}{2^n} = 1 - \frac{3069}{3072} \]

\[ \Rightarrow \frac{1}{2^n} = \frac{3}{3072}\]

\[ \Rightarrow 2^n = \frac{3072}{3}\]

\[ \Rightarrow 2^n = 1024 \]

\[ \Rightarrow 2^n = 2^{10} \]

\[ \therefore n = 10\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Geometric Progression - Exercise 20.3 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 20 Geometric Progression
Exercise 20.3 | Q 5 | पृष्ठ २८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).


If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`


If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.


Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that P2Rn = Sn


If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.


If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]


Find:

the 10th term of the G.P.

\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]

 


Which term of the G.P. :

\[\sqrt{3}, 3, 3\sqrt{3}, . . . \text { is } 729 ?\]


In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.


Find three numbers in G.P. whose sum is 38 and their product is 1728.


The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.


Find the sum of the following geometric progression:

1, −1/2, 1/4, −1/8, ... to 9 terms;


Find the sum of the following geometric series:

 0.15 + 0.015 + 0.0015 + ... to 8 terms;


Find the sum of the following geometric series:

\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]


If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.


Find the sum of the terms of an infinite decreasing G.P. in which all the terms are positive, the first term is 4, and the difference between the third and fifth term is equal to 32/81.


Find the rational numbers having the following decimal expansion: 

\[0 . 6\overline8\]


Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.


If a, b, c are in G.P., prove that log a, log b, log c are in A.P.


The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.


If a, b, c are in G.P., prove that:

\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]


The value of 91/3 . 91/9 . 91/27 ... upto inf, is 


If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio


The number of bacteria in a culture doubles every hour. If there were 50 bacteria originally in the culture, how many bacteria will be there at the end of 5thhour?


A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?


The numbers 3, x, and x + 6 form are in G.P. Find x


For a G.P. if S5 = 1023 , r = 4, Find a


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`2, 4/3, 8/9, 16/27, ...`


Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"` 


A ball is dropped from a height of 10m. It bounces to a height of 6m, then 3.6m and so on. Find the total distance travelled by the ball


Select the correct answer from the given alternative.

If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?


Select the correct answer from the given alternative.

Which term of the geometric progression 1, 2, 4, 8, ... is 2048


Select the correct answer from the given alternative.

Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –


Answer the following:

For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.


Answer the following:

Find three numbers in G.P. such that their sum is 35 and their product is 1000


Answer the following:

Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.


Answer the following:

If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0


The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×