Advertisements
Advertisements
प्रश्न
Find the sum of the following geometric progression:
1, −1/2, 1/4, −1/8, ... to 9 terms;
उत्तर
Here, a = 1 and r = − \[\frac{1}{2}\] .
\[\therefore S_9 = a\left( \frac{1 - r^9}{1 - r} \right) \]
\[ = 1 \left( \frac{1 - \left( - \frac{1}{2} \right)^9}{1 - \left( - \frac{1}{2} \right)} \right) \]
\[ = \frac{1 - \left( - \frac{1}{512} \right)}{\frac{3}{2}}\]
\[ = \frac{\frac{513}{512}}{\frac{3}{2}}\]
\[ = \frac{513 \times 2}{512 \times 3}\]
\[ = \frac{171}{256}\]
APPEARS IN
संबंधित प्रश्न
The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that q2 = ps.
How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?
Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.
Insert two numbers between 3 and 81 so that the resulting sequence is G.P.
if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
4, −2, 1, −1/2, ...
Show that one of the following progression is a G.P. Also, find the common ratio in case:
−2/3, −6, −54, ...
Which term of the G.P. :
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]
Find three numbers in G.P. whose sum is 65 and whose product is 3375.
The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.
The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.
Find the sum :
\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.
Find the sum of the following serie to infinity:
\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]
If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively
\[\frac{2S S_1}{S^2 + S_1}\text { and } \frac{S^2 - S_1}{S^2 + S_1}\]
The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.
If a, b, c are in G.P., prove that:
\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]
If a, b, c are in G.P., prove that:
(a + 2b + 2c) (a − 2b + 2c) = a2 + 4c2.
If a, b, c, d are in G.P., prove that:
(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.
If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.
If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to
If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is
Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals
If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio
A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?
The numbers 3, x, and x + 6 form are in G.P. Find 20th term.
For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r
For a G.P. If t3 = 20 , t6 = 160 , find S7
Find : `sum_("n" = 1)^oo 0.4^"n"`
If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.
Select the correct answer from the given alternative.
The tenth term of the geometric sequence `1/4, (-1)/2, 1, -2,` ... is –
Select the correct answer from the given alternative.
The sum of 3 terms of a G.P. is `21/4` and their product is 1 then the common ratio is –
Answer the following:
In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term
Answer the following:
Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.
Answer the following:
If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0
Answer the following:
If p, q, r, s are in G.P., show that (pn + qn), (qn + rn) , (rn + sn) are also in G.P.
Answer the following:
Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`
The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is 216 cm3 and the total surface area is 252cm2. The length of the longest edge is ______.
The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.