Advertisements
Advertisements
प्रश्न
Find the sum :
\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]
उत्तर
\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right]\]
\[ = \sum^{10}_{n = 1} \left( \frac{1}{2} \right)^{n - 1} + \sum^{10}_{n = 1} \left( \frac{1}{5} \right)^{n + 1} \]
\[ = \left\{ 1 + \frac{1}{2} + \frac{1}{4} + . . . + \left( \frac{1}{2} \right)^9 \right\} + \left\{ \frac{1}{5^2} + \frac{1}{5^3} + \frac{1}{5^4} + . . . + \frac{1}{5^{11}} \right\}\]
\[ = 1\left( \frac{1 - \left( \frac{1}{2} \right)^{10}}{1 - \frac{1}{2}} \right) + \frac{1}{25}\left( \frac{1 - \left( \frac{1}{5} \right)^{10}}{1 - \frac{1}{5}} \right) \]
\[ = \left( \frac{2^{10} - 1}{2^9} \right) + \left( \frac{5^{10} - 1}{4 \times 5^{11}} \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate `sum_(k=1)^11 (2+3^k )`
How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?
Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.
If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.
Show that the sequence <an>, defined by an = \[\frac{2}{3^n}\], n ϵ N is a G.P.
The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.
Find the sum of the following geometric progression:
1, −1/2, 1/4, −1/8, ... to 9 terms;
Find the sum of the following geometric series:
\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text { to n terms }\]
Evaluate the following:
\[\sum^{11}_{n = 1} (2 + 3^n )\]
If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).
Find the sum of the following serie to infinity:
\[1 - \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^3} + \frac{1}{3^4} + . . . \infty\]
Find the sum of the following serie to infinity:
\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]
If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.
Express the recurring decimal 0.125125125 ... as a rational number.
If a, b, c are in A.P. and a, x, b and b, y, c are in G.P., show that x2, b2, y2 are in A.P.
If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.
If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is
Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals
The two geometric means between the numbers 1 and 64 are
Check whether the following sequence is G.P. If so, write tn.
2, 6, 18, 54, …
Check whether the following sequence is G.P. If so, write tn.
`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...
For the G.P. if r = `1/3`, a = 9 find t7
Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1
The numbers 3, x, and x + 6 form are in G.P. Find x
For the following G.P.s, find Sn
3, 6, 12, 24, ...
For a G.P. if a = 2, r = 3, Sn = 242 find n
For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r
For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.
Express the following recurring decimal as a rational number:
`2.3bar(5)`
Express the following recurring decimal as a rational number:
`51.0bar(2)`
Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.
Select the correct answer from the given alternative.
The common ratio for the G.P. 0.12, 0.24, 0.48, is –
Select the correct answer from the given alternative.
The sum of 3 terms of a G.P. is `21/4` and their product is 1 then the common ratio is –
Answer the following:
In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term
Answer the following:
Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...
Answer the following:
For a G.P. if t2 = 7, t4 = 1575 find a
Answer the following:
If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0
Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.