मराठी

If the Sum of First Two Terms of an Infinite Gp is 1 Every Term is Twice the Sum of All the Successive Terms, Then Its First Term is - Mathematics

Advertisements
Advertisements

प्रश्न

If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is 

पर्याय

  • (a) 1/3 

  • (b) 2/3

  • (c) 1/4

  • (d) 3/4

MCQ

उत्तर

(d) 3/4 

\[\text{ Let the terms of the G . P } . be a, a_2 , a_3 , a_4 , a_5 , . . . , \infty . \]
\[\text{ And, let the common ratio be r } . \]
\[\text{ Now }, a + a_2 = 1\]
\[ \therefore a + ar = 1 . . . . . . . . (i)\]
\[\text{ Also }, a = 2\left( a_2 + a_3 + a_4 + a_5 + . . . \infty \right)\]
\[ \Rightarrow a = 2\left( ar + a r^2 + a r^3 + a r^4 + . . . \infty \right)\]
\[ \Rightarrow a = 2\left( \frac{ar}{1 - r} \right)\]
\[ \Rightarrow 1 - r = 2r\]
\[ \Rightarrow 3r = 1\]
\[ \Rightarrow r = \frac{1}{3}\]
\[\text{ Putting the value of r in } (i): \]
\[a + \frac{a}{3} = 1\]
\[ \Rightarrow \frac{4a}{3} = 1\]
\[ \Rightarrow 4a = 3\]
\[ \Rightarrow a = \frac{3}{4}\]
\[\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Geometric Progression - Exercise 20.8 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 20 Geometric Progression
Exercise 20.8 | Q 11 | पृष्ठ ५७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that q2 = ps.


For what values of x, the numbers  `-2/7, x, -7/2` are in G.P?


The sum of first three terms of a G.P. is  `39/10` and their product is 1. Find the common ratio and the terms.


How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?


The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.


If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.


Which term of the G.P. :

\[2, 2\sqrt{2}, 4, . . .\text {  is }128 ?\]


Which term of the G.P. :

\[\sqrt{3}, 3, 3\sqrt{3}, . . . \text { is } 729 ?\]


If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.


Find the sum of the following geometric progression:

2, 6, 18, ... to 7 terms;


Find the sum of the following geometric progression:

1, 3, 9, 27, ... to 8 terms;


Find the sum of the following series:

7 + 77 + 777 + ... to n terms;


The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.


How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?


Find the sum of the terms of an infinite decreasing G.P. in which all the terms are positive, the first term is 4, and the difference between the third and fifth term is equal to 32/81.


If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.


If a, b, c are in G.P., prove that:

a (b2 + c2) = c (a2 + b2)


If a, b, c are in G.P., prove that:

\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]


If a, b, c, d are in G.P., prove that:

\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]


If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.


Insert 5 geometric means between 16 and \[\frac{1}{4}\] .


Find the geometric means of the following pairs of number:

a3b and ab3


If abc are in G.P. and xy are AM's between ab and b,c respectively, then 


If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is 


The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to 


For what values of x, the terms `4/3`, x, `4/27` are in G.P.?


The numbers 3, x, and x + 6 form are in G.P. Find nth term


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 10 years.


The numbers x − 6, 2x and x2 are in G.P. Find nth term


For the following G.P.s, find Sn

0.7, 0.07, 0.007, .....


If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

9, 8.1, 7.29, ...


The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares


If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.


At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.


If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.


In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.


The sum or difference of two G.P.s, is again a G.P.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×