मराठी

For what values of x, the numbers -27,x,-72 are in G.P? - Mathematics

Advertisements
Advertisements

प्रश्न

For what values of x, the numbers  `-2/7, x, -7/2` are in G.P?

बेरीज

उत्तर

The given numbers are `(-2)/7, x, (-7)/2`

Common ratio = `x/(-2/7) = (-7x)/(2)`

Also, common ratio = `(-7/2)/(x) = (-7)/(2x)`

∴ `(-7x)/2 = (-7)/(2x)`

= `x^2 = (-2 xx 7)/(-2 xx 7) = 1`

= x = `sqrt1`

= x = ± 1

Thus, for x = ± 1, the given numbers will be in G.P.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Sequences and Series - Exercise 9.3 [पृष्ठ १९२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 9 Sequences and Series
Exercise 9.3 | Q 6 | पृष्ठ १९२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).


The sum of first three terms of a G.P. is  `39/10` and their product is 1. Find the common ratio and the terms.


Find :

the 12th term of the G.P.

\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]


Find three numbers in G.P. whose sum is 65 and whose product is 3375.


Find the sum of the following geometric progression:

2, 6, 18, ... to 7 terms;


Find the sum of the following geometric progression:

1, 3, 9, 27, ... to 8 terms;


Find the sum of the following geometric series:

(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;


Evaluate the following:

\[\sum^{10}_{n = 2} 4^n\]


Find the sum of the following series:

7 + 77 + 777 + ... to n terms;


How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?


If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.


Let an be the nth term of the G.P. of positive numbers.

Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.


Find the sum of the following serie to infinity:

`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`


Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.


If a, b, c are in G.P., prove that:

\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]


If a, b, c are in G.P., prove that:

\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]


If a, b, c, d are in G.P., prove that:

(b + c) (b + d) = (c + a) (c + d)


If a, b, c, d are in G.P., prove that:

(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.


If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.


If the sum of an infinite decreasing G.P. is 3 and the sum of the squares of its term is \[\frac{9}{2}\], then write its first term and common difference.


If the first term of a G.P. a1a2a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is


The nth term of a G.P. is 128 and the sum of its n terms  is 225. If its common ratio is 2, then its first term is


If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is


For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r


Find: `sum_("r" = 1)^10(3 xx 2^"r")`


Find: `sum_("r" = 1)^10 5 xx 3^"r"`


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`2, 4/3, 8/9, 16/27, ...`


Express the following recurring decimal as a rational number:

`0.bar(7)`


If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term


Select the correct answer from the given alternative.

If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?


Select the correct answer from the given alternative.

Which term of the geometric progression 1, 2, 4, 8, ... is 2048


Select the correct answer from the given alternative.

Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –


Answer the following:

For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.


Answer the following:

Find three numbers in G.P. such that their sum is 35 and their product is 1000


Answer the following:

For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.


Answer the following:

Find `sum_("r" = 1)^"n" (2/3)^"r"`


Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.


If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1


The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×