मराठी

If A, B, C, D Are in G.P., Prove That: (A2 + B2), (B2 + C2), (C2 + D2) Are in G.P. - Mathematics

Advertisements
Advertisements

प्रश्न

If a, b, c, d are in G.P., prove that:

(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.

उत्तर

a, b, c and d are in G.P.

\[\therefore b^2 = ac\]

\[ad = bc \]

\[ c^2 = bd\]   .......(1)

\[\left( b^2 + c^2 \right)^2 = \left( b^2 \right)^2 + 2 b^2 c^2 + \left( c^2 \right)^2 \]

\[ \Rightarrow \left( b^2 + c^2 \right)^2 = \left( ac \right)^2 + b^2 c^2 + b^2 c^2 + \left( bd \right)^2 \left[\text {  Using } (1) \right]\]

\[ \Rightarrow \left( b^2 + c^2 \right)^2 = a^2 c^2 + a^2 d^2 + b^2 c^2 + b^2 d^2 \left[ \text { Using } (1) \right]\]

\[ \Rightarrow \left( b^2 + c^2 \right)^2 = a^2 \left( c^2 + d^2 \right) + b^2 \left( c^2 + d^2 \right)\]

\[ \Rightarrow \left( b^2 + c^2 \right)^2 = \left( a^2 + b^2 \right)\left( c^2 + d^2 \right)\]

\[\text {Therefore, } \left( a^2 + b^2 \right), \left( c^2 + d^2 \right)\text{ and } \left( b^2 + c^2 \right) \text { are also in G . P } .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Geometric Progression - Exercise 20.5 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 20 Geometric Progression
Exercise 20.5 | Q 11.1 | पृष्ठ ४६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.


Which term of the following sequence:

`1/3, 1/9, 1/27`, ...., is `1/19683`?


Given a G.P. with a = 729 and 7th term 64, determine S7.


Find :

the 8th term of the G.P. 0.3, 0.06, 0.012, ...


Find :

the 12th term of the G.P.

\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]


Find the sum of the following geometric progression:

4, 2, 1, 1/2 ... to 10 terms.


Find the sum of the following geometric series:

\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]


Find the sum of the following geometric series:

\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text {  to n terms }\]


Find the sum of the following series:

0.5 + 0.55 + 0.555 + ... to n terms.


The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.


The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.


If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).


Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.


Find the rational numbers having the following decimal expansion: 

\[3 . 5\overline 2\]


One side of an equilateral triangle is 18 cm. The mid-points of its sides are joined to form another triangle whose mid-points, in turn, are joined to form still another triangle. The process is continued indefinitely. Find the sum of the (i) perimeters of all the triangles. (ii) areas of all triangles.


Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.


If a, b, c are in G.P., prove that log a, log b, log c are in A.P.


If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.


Three numbers are in A.P. and their sum is 15. If 1, 3, 9 be added to them respectively, they form a G.P. Find the numbers.


If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)


If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.


If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.

  

Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .


The fractional value of 2.357 is 


If pq be two A.M.'s and G be one G.M. between two numbers, then G2


Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals 


Mark the correct alternative in the following question: 

Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to 


Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.


The numbers 3, x, and x + 6 form are in G.P. Find x


For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r


The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.


Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.


If the sum of an infinite GP a, ar, ar2, ar3, ...... . is 15 and the sum of the squares of its each term is 150, then the sum of ar2, ar4, ar6, .... is ______.


Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______. 


If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×