Advertisements
Advertisements
प्रश्न
The numbers 3, x, and x + 6 form are in G.P. Find x
उत्तर
The numbers 3, x, and x + 6 are in G.P.
∴ `"x"/3 = ("x" + 6)/"x"`
∴ x2 = 3x + 18
∴ x2 – 3x – 18 = 0
∴ (x – 6)(x + 3) = 0
∴ x – 6 = 0 or x + 3 = 0
∴ x = 6 or x = – 3
APPEARS IN
संबंधित प्रश्न
Which term of the following sequence:
`2, 2sqrt2, 4,.... is 128`
For what values of x, the numbers `-2/7, x, -7/2` are in G.P?
Evaluate `sum_(k=1)^11 (2+3^k )`
The sum of first three terms of a G.P. is `39/10` and their product is 1. Find the common ratio and the terms.
If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]
Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...
Which term of the G.P. :
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]
Which term of the G.P. :
\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]
In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.
Find three numbers in G.P. whose sum is 65 and whose product is 3375.
The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.
Find the sum of the following geometric progression:
2, 6, 18, ... to 7 terms;
Find the sum of the following geometric progression:
1, 3, 9, 27, ... to 8 terms;
Find the sum of the following geometric series:
x3, x5, x7, ... to n terms
Evaluate the following:
\[\sum^{10}_{n = 2} 4^n\]
Find the sum of the following serie:
5 + 55 + 555 + ... to n terms;
Find the sum :
\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]
How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?
If a, b, c are in G.P., then prove that:
If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.
If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.
Find the geometric means of the following pairs of number:
−8 and −2
If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is
The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is
Mark the correct alternative in the following question:
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to
For a G.P. a = 2, r = `-2/3`, find S6
For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r
Find the sum to n terms of the sequence.
0.2, 0.02, 0.002, ...
For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.
If S, P, R are the sum, product, and sum of the reciprocals of n terms of a G.P. respectively, then verify that `["S"/"R"]^"n"` = P2
Find : `sum_("r" = 1)^oo (-1/3)^"r"`
If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.
Select the correct answer from the given alternative.
Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)
Answer the following:
If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q
Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.
The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.
Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______.