मराठी

Show that One of the Following Progression is a G.P. Also, Find the Common Ratio in Case:1/2, 1/3, 2/9, 4/27, ... - Mathematics

Advertisements
Advertisements

प्रश्न

Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...

उत्तर

We have, 

\[ a_1 = \frac{1}{2} , a_2 = \frac{1}{3}, a_3 = \frac{2}{9}, a_4 = \frac{4}{27}\]

\[\text { Now }, \frac{a_2}{a_1} = \frac{\frac{1}{3}}{\frac{1}{2}} = \frac{2}{3}, \frac{a_3}{a_2} = \frac{\frac{2}{9}}{\frac{1}{3}} = \frac{2}{3}, \frac{a_4}{a_3} = \frac{\frac{4}{27}}{\frac{2}{9}} = \frac{2}{3}\]

\[ \therefore \frac{a_2}{a_1} = \frac{a_3}{a_2} = \frac{a_4}{a_3} = \frac{2}{3}\]

\[\text { Thus, } a_1 , a_2 , a_3 \text { and } a_4 \text { are in G . P . , where the first term is} \frac{1}{2} \text { and the common ratio is } \frac{2}{3} .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Geometric Progression - Exercise 20.1 [पृष्ठ ९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 20 Geometric Progression
Exercise 20.1 | Q 1.4 | पृष्ठ ९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Which term of the following sequence:

`1/3, 1/9, 1/27`, ...., is `1/19683`?


Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.


Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`


If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.


Find:
the ninth term of the G.P. 1, 4, 16, 64, ...


Find :

the 12th term of the G.P.

\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]


The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.


Find the sum of the following geometric progression:

1, 3, 9, 27, ... to 8 terms;


Evaluate the following:

\[\sum^{11}_{n = 1} (2 + 3^n )\]


If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.


How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?


Find the sum of the following serie to infinity:

8 +  \[4\sqrt{2}\] + 4 + ... ∞


The sum of three numbers a, b, c in A.P. is 18. If a and b are each increased by 4 and c is increased by 36, the new numbers form a G.P. Find a, b, c.


If a, b, c are in G.P., then prove that:

\[\frac{a^2 + ab + b^2}{bc + ca + ab} = \frac{b + a}{c + b}\]

If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.


Insert 5 geometric means between 16 and \[\frac{1}{4}\] .


For the G.P. if a = `7/243`, r = 3 find t6.


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 3 years.


The numbers x − 6, 2x and x2 are in G.P. Find 1st term


The numbers x − 6, 2x and x2 are in G.P. Find nth term


For the following G.P.s, find Sn

3, 6, 12, 24, ...


For a G.P. if S5 = 1023 , r = 4, Find a


For a G.P. If t3 = 20 , t6 = 160 , find S7


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

9, 8.1, 7.29, ...


A ball is dropped from a height of 10m. It bounces to a height of 6m, then 3.6m and so on. Find the total distance travelled by the ball


Select the correct answer from the given alternative.

The common ratio for the G.P. 0.12, 0.24, 0.48, is –


Select the correct answer from the given alternative.

If common ratio of the G.P is 5, 5th term is 1875, the first term is -


Select the correct answer from the given alternative.

Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –


Answer the following:

In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term


Answer the following:

If for a G.P. t3 = `1/3`, t6 = `1/81` find r


Answer the following:

Find `sum_("r" = 1)^"n" (2/3)^"r"`


Answer the following:

Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.


In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.


The third term of G.P. is 4. The product of its first 5 terms is ______.


If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.


The third term of a G.P. is 4, the product of the first five terms is ______.


If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.


The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×