मराठी

Show that the Sequence <An>, Defined by an = 2 3 N , N ϵ N is a G.P. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the sequence <an>, defined by an = \[\frac{2}{3^n}\], n ϵ N is a G.P.

उत्तर

We have,

\[ a_n = \frac{2}{3^n}, n \in N\]

\[\text { Putting n } = 1, 2, 3, . . . \]

\[ a_1 = \frac{2}{3^1} = \frac{2}{3}, a_2 = \frac{2}{3^2} = \frac{2}{9}, a_3 = \frac{2}{3^3} = \frac{2}{27} \text { and so on } . \]

\[\text { Now, } \frac{a_2}{a_1} = \frac{\frac{2}{9}}{\frac{2}{3}} = \frac{1}{3}, \frac{a_3}{a_2} = \frac{\frac{2}{27}}{\frac{2}{9}} = \frac{1}{3} \text { and so on } . \]

\[ \therefore \frac{a_2}{a_1} = \frac{a_3}{a_2} = . . . = \frac{1}{3}\]

\[\text { So, the sequence is an G . P . , where } \frac{2}{3} \text { is the first term and } \frac{1}{3}\text {  is the common ratio }.\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Geometric Progression - Exercise 20.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 20 Geometric Progression
Exercise 20.1 | Q 2 | पृष्ठ १०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.


Which term of the following sequence:

`1/3, 1/9, 1/27`, ...., is `1/19683`?


If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`


The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.


if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.


Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...


Find :

the 12th term of the G.P.

\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]


Find : 

nth term of the G.P.

\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]


Find the 4th term from the end of the G.P.

\[\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \frac{1}{54}, . . . , \frac{1}{4374}\]


If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.


The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.

 

Find the sum of the following geometric progression:

2, 6, 18, ... to 7 terms;


Find the sum of the following geometric series:

x3, x5, x7, ... to n terms


The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.


The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.


Let an be the nth term of the G.P. of positive numbers.

Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.


Find the sum of the following serie to infinity:

`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`


Express the recurring decimal 0.125125125 ... as a rational number.


Find the rational numbers having the following decimal expansion: 

\[0 .\overline {231 }\]


Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.


If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.


If a, b, c are in A.P. and a, x, b and b, y, c are in G.P., show that x2, b2, y2 are in A.P.


Insert 5 geometric means between 16 and \[\frac{1}{4}\] .


Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .


If logxa, ax/2 and logb x are in G.P., then write the value of x.


If A1, A2 be two AM's and G1G2 be two GM's between and b, then find the value of \[\frac{A_1 + A_2}{G_1 G_2}\]


The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is 


If pq be two A.M.'s and G be one G.M. between two numbers, then G2


For the G.P. if a = `2/3`, t6 = 162, find r.


A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?


The numbers 3, x, and x + 6 form are in G.P. Find nth term


For a G.P. a = 2, r = `-2/3`, find S6


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`-3, 1, (-1)/3, 1/9, ...`


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

9, 8.1, 7.29, ...


Find : `sum_("n" = 1)^oo 0.4^"n"`


Select the correct answer from the given alternative.

If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?


Answer the following:

Find `sum_("r" = 1)^"n" (2/3)^"r"`


Answer the following:

If for a G.P. first term is (27)2 and seventh term is (8)2, find S8 


If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`


Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×