मराठी

Find the 4th Term from the End of the G.P. 1 2 , 1 6 , 1 18 , 1 54 , . . . , 1 4374 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the 4th term from the end of the G.P.

\[\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \frac{1}{54}, . . . , \frac{1}{4374}\]

उत्तर

\[\text { After reversing the given G . P . , we get another G . P . whose first term, l is } \frac{1}{4374} \text { and common ratio is } 3 . \]

\[ \therefore 4^{th} \text { term from the end } = l \left( \frac{1}{r} \right)^{4 - 1} \]

\[ = \left( \frac{1}{4374} \right) \left( 3 \right)^{4 - 1} \]

\[ = \left( \frac{27}{4374} \right)\]

\[ = \frac{1}{162}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Geometric Progression - Exercise 20.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 20 Geometric Progression
Exercise 20.1 | Q 8 | पृष्ठ १०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Which term of the following sequence:

`1/3, 1/9, 1/27`, ...., is `1/19683`?


If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.


Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`


If f is a function satisfying f (x +y) = f(x) f(y) for all x, y ∈ N such that f(1) = 3 and `sum_(x = 1)^n` f(x) = 120, find the value of n.


If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]


Find :

the 8th term of the G.P. 0.3, 0.06, 0.012, ...


Which term of the G.P. :

\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]


If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].


Find three numbers in G.P. whose sum is 65 and whose product is 3375.


Find the sum of the following geometric series:

`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;


Find the sum of the following geometric series:

1, −a, a2, −a3, ....to n terms (a ≠ 1)


Find the sum of the following series:

9 + 99 + 999 + ... to n terms;


If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.


How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?


If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.


Find the sum of the following series to infinity:

10 − 9 + 8.1 − 7.29 + ... ∞


Express the recurring decimal 0.125125125 ... as a rational number.


If a, b, c, d are in G.P., prove that:

\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]


If a, b, c are in G.P., prove that the following is also in G.P.:

a3, b3, c3


If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.


If the first term of a G.P. a1a2a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is


The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is 


In a G.P. of even number of terms, the sum of all terms is five times the sum of the odd terms. The common ratio of the G.P. is 


Let x be the A.M. and yz be two G.M.s between two positive numbers. Then, \[\frac{y^3 + z^3}{xyz}\]  is equal to 


Check whether the following sequence is G.P. If so, write tn.

1, –5, 25, –125 …


Check whether the following sequence is G.P. If so, write tn.

7, 14, 21, 28, …


The numbers 3, x, and x + 6 form are in G.P. Find nth term


For the following G.P.s, find Sn.

`sqrt(5)`, −5, `5sqrt(5)`, −25, ...


Find the sum to n terms of the sequence.

0.5, 0.05, 0.005, ...


Find the sum to n terms of the sequence.

0.2, 0.02, 0.002, ...


For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.


The value of a house appreciates 5% per year. How much is the house worth after 6 years if its current worth is ₹ 15 Lac. [Given: (1.05)5 = 1.28, (1.05)6 = 1.34]


Answer the following:

Find three numbers in G.P. such that their sum is 35 and their product is 1000


Answer the following:

If for a G.P. first term is (27)2 and seventh term is (8)2, find S8 


The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is 216 cm3 and the total surface area is 252cm2. The length of the longest edge is ______.


Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×