Advertisements
Advertisements
प्रश्न
If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.
उत्तर
We have,
a +b = 3, ab = p, c + d =12 and cd = q
a, b, c and d form a G.P.
∴ First term = a, b = ar, c = ar2 and d = ar3
Then, we have
a + b = 3 and c + d = 12
\[\Rightarrow a + ar = 3 \]
\[ \Rightarrow a( 1 + r ) = 3 . . . \left( i \right)\]
\[\text { Similarly, } a r^2 (1 + r) = 12 . . . \left( ii \right)\]
\[ \Rightarrow \frac{a r^2 \left( 1 + r \right)}{a\left( 1 + r \right)} = \frac{12}{3}\]
\[ \Rightarrow r^2 = 4 \]
\[ \Rightarrow r = 2\]
\[ \therefore a \left( 1 + r \right) = 3 \]
\[ \Rightarrow a = 1\]
\[\text { Now }, p = ab \]
\[ \Rightarrow p = a \times ar = 2\]
\[\text { And, } q = cd \]
\[ \Rightarrow q = a r^2 \times a r^3 = 2^5 = 32\]
\[ \therefore \frac{q + p}{q - p} = \frac{32 + 2}{32 - 2} = \frac{34}{30} = \frac{17}{15}\]
APPEARS IN
संबंधित प्रश्न
Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…
Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).
Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.
If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.
Insert two numbers between 3 and 81 so that the resulting sequence is G.P.
If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.
If a, b, c are in A.P,; b, c, d are in G.P and ` 1/c, 1/d,1/e` are in A.P. prove that a, c, e are in G.P.
Find:
the 10th term of the G.P.
\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]
Which term of the G.P. :
\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]
If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.
If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.
Evaluate the following:
\[\sum^{10}_{n = 2} 4^n\]
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.
Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.
Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.
If a, b, c are in G.P., prove that the following is also in G.P.:
a3, b3, c3
If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.
If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.
The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .
Write the product of n geometric means between two numbers a and b.
If the first term of a G.P. a1, a2, a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is
If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]
If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is
Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals
Check whether the following sequence is G.P. If so, write tn.
1, –5, 25, –125 …
If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio
The numbers x − 6, 2x and x2 are in G.P. Find 1st term
For the following G.P.s, find Sn
3, 6, 12, 24, ...
For the following G.P.s, find Sn.
p, q, `"q"^2/"p", "q"^3/"p"^2,` ...
For a G.P. if a = 2, r = 3, Sn = 242 find n
Find the sum to n terms of the sequence.
0.2, 0.02, 0.002, ...
Find: `sum_("r" = 1)^10(3 xx 2^"r")`
Express the following recurring decimal as a rational number:
`2.3bar(5)`
The third term of G.P. is 4. The product of its first 5 terms is ______.
If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.
The third term of a G.P. is 4, the product of the first five terms is ______.
The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.
The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.