Advertisements
Advertisements
प्रश्न
Find: `sum_("r" = 1)^10(3 xx 2^"r")`
उत्तर
`sum_("r" = 1)^10(3 xx 2^"r") = 3 sum_("r"=1)^10 2"r"`
= 3(2 + 22 + 23 + ... + 210)
Here, 2, 22, 23, ..., 210 are in G.P. with a = 2, r = 2
∴ `sum_("r" = 1)^10(3 xx 2^"r") = 3[(2(2^10 - 1))/(2 -1)]` ....... `[because "S"_"n" = ("a"("r"^"n" -1))/("r" -1)]`
= 6(1024 – 1)
= 6(1023)
= 6138
APPEARS IN
संबंधित प्रश्न
Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.
Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.
Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that P2Rn = Sn
If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
−2/3, −6, −54, ...
Which term of the G.P. :
\[\sqrt{3}, 3, 3\sqrt{3}, . . . \text { is } 729 ?\]
Find the 4th term from the end of the G.P.
\[\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \frac{1}{54}, . . . , \frac{1}{4374}\]
Find the sum of the following geometric series:
\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]
Find the sum of the following geometric series:
\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text { to n terms }\]
The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.
Find the sum of the following serie to infinity:
8 + \[4\sqrt{2}\] + 4 + ... ∞
If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.
Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.
If a, b, c are in G.P., prove that:
\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]
If a, b, c, d are in G.P., prove that:
(a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2
If a, b, c are in G.P., prove that the following is also in G.P.:
a2, b2, c2
If a, b, c, d are in G.P., prove that:
(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.
If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.
The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .
If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.
The fractional value of 2.357 is
If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is
For the G.P. if a = `7/243`, r = 3 find t6.
The numbers 3, x, and x + 6 form are in G.P. Find nth term
For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.
The value of a house appreciates 5% per year. How much is the house worth after 6 years if its current worth is ₹ 15 Lac. [Given: (1.05)5 = 1.28, (1.05)6 = 1.34]
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/2, 1/4, 1/8, 1/16,...`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`2, 4/3, 8/9, 16/27, ...`
Express the following recurring decimal as a rational number:
`2.bar(4)`
Select the correct answer from the given alternative.
The tenth term of the geometric sequence `1/4, (-1)/2, 1, -2,` ... is –
Answer the following:
Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...
At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.
The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is 216 cm3 and the total surface area is 252cm2. The length of the longest edge is ______.
For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.
The third term of a G.P. is 4, the product of the first five terms is ______.
Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.
If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.
If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.